Haptic Interaction with Multiresolution Image Curves

Dinesh K. Pai L.-M. Reissell

Department of Computer Science
University of British Columbia
Vancouver, BC' V6T 17}, Canada
Email: pailreissell@cs.ubc.ca

We describe a system for interacting with shapes in two dimensional im-
ages with force feedback, using haptic devices. We construct multiresolu-
tion models of boundary curves in images, using wavelet multiresolution
with good approximation properties. The boundary curves are treated as
solid objects that will produce a force when pushed with a mouse-like
haptic interface. This interaction force is then be rendered through a 2D
haptic interface, providing kinesthetic feedback to the user.

1 Introduction

We describe a system for interacting with two dimensional images with force
feedback, using haptic devices. Such a system has several potential applica-
tions: it could make image editing software more natural to use by providing
kinesthetic feedback; it could also allow the visually impaired to access visual
information more easily.

Specifically, we treat the boundaries of shapes in images as solid objects that
will produce a force when pushed with a mouse-like haptic interface. This
interaction force can then be “rendered” (i.e., felt by the user) through the
haptic interface.

The boundary curves are obtained from edge detection and linking, and can
have hundreds of edges on each curve. For such models the collision detection

* Portions of this paper were presented at the 1996 ASME Symposium on Haptic
Interfaces, Atlanta, GA. This work was supported in part by IRIS, BC Advanced
Systems Institute, and NSERC.

Preprint submitted to Elsevier Preprint 14 April 1997

and contact geometry computation are critical issues. They have to be per-
formed at high servo rates (for example, 100Hz — 1 KHz) on relatively small
embedded computers.

We develop a wavelet multiresolution representation of curves which is well
suited for such haptic interaction. Contact computations are performed at
a desired tolerance level, and hierarchically refined. The resolution level can
be selected to accommodate different haptic scales, as well as to account for
limitations of the hardware. The haptic scales can be adapted dynamically
to the task as well. For instance, we can choose to “render” finer scales only
when the hand is moving slowly along the boundary.

Based on this multiresolution hierarchy, we have developed a fast, anytime
algorithm to determine if a contact has occurred with the model, and if so, to
compute the reaction force due to contact using the appropriate resolution.
We maintain a partially expanded binary tree called a collision tree, which
augments the multiresolution tree with error boxes to bound the maximum
deviation of the curve from the approximation. The use of these selectively
expanded trees corresponds to the “spatial coherence” used by other authors.
We use the penetration of the object (at the given level of resolution) as a
hybrid force and position command for computing the reaction force and the
motion of the virtual object.

In §2 below, we describe our wavelet multiresolution representation of curves;
§3 we describe the hierarchical collision detection method based on the mul-
tiresolution representation. §4 describes how contact forces and transitions
are computed. §5 describes the current implementation and results using the
Pantograph haptic interface.

1.1 Related Work

There has been considerable recent interest in the development of high per-
formance haptic interface devices, and in controlling the devices to emulate
contact with stiff walls (see, for example, [10] for a survey). We are not aware
of any other work which addresses direct interaction with 2D images. In re-
lated work, [16] describes a system for reconstructing 3D shape from a stereo
image pair and haptic interaction with the 3D shape at a single resolution.

Methods of hierarchical curve and surface representation based on subdivision
(e.g. strip trees, quadtrees, spline subdivision) have been used extensively in
geometric modeling (see, e.g.,[5]). Our hierarchical representation and its use
is perhaps closest to the sphere trees of [6] and box trees of [18]. The important
difference with our wavelet-based method is that it allows better control of
the least-squares error between the approximation and the original curve; this

means that the approximate, low resolution curve feels much more like the
original and and we generally get tight error boxes.

In other related work, there has been considerable recent interest in fast in-
cremental computation of the distance between polyhedra (e.g., [3], [7], [12]).
Unlike the present work, these consider the geometry at a fixed resolution;
hence it is not easy to adapt the performance of the algorithms dynamically
by trading resolution for speed. The OBBTree [4] also uses a similar hierar-
chy of bounding boxes, but does not provide lower resolution approximations
to the geometric object; therefore the hierarchy can not be directly used for
interaction at different resolutions or denoising.

2 Multiresolution Curve Representation with Wavelets

We use wavelet multiresolution to represent the boundary of an object hierar-
chically. These methods will provide us with approximations of the object at
different resolution levels, as well as a sequence of bounding boxes for collision
detection.

There are other methods of related hierarchical data representation, including
different filtering schemes. However, wavelet multiresolution has advantages
over these methods: the approximation properties of the multiresolution hier-
archy are good and can be carefully controlled by selecting suitable wavelet
bases. Choosing good approximations leads to tighter bounding boxes and
efficient collision checking. Wavelets also naturally support related applica-
tions such as compression of data for transmission in telerobotics tasks and
denoising of data.

In this section, we provide a brief introduction to the use of wavelets in curve
representation. The techniques can be directly extended to gridded surfaces.
Wavelet methods are available for other types of surfaces as well. For more
details, we refer the reader to, for example, [17], [15], and [2].

Generally, the wavelet transform converts a function into an alternate, but
equivalent, representation in terms of scale and position. This can be compared
with the Fourier transform which represents the data in terms of frequency.

More precisely, the function is represented using its coefficents in a basis of
wavelets, %/NJZ]‘, analogous to Fourier coefficients in a basis of sinusoids. In con-
trast to the globally supported sinusoids, wavelets are localized in position;
they are also well localized in the frequency domain, so a single wavelet basis
function picks out a given frequency band in a given spatial location.

There are many choices in selecting the wavelet basis. In a standard construc-
tion, a wavelet basis, ;/NJZJ', is obtained by dilations and translations of a basic
wavelet, where the subscript [indexes the scale (or “level”) of the wavelet
and 7 indexes the position. The discrete wavelet transform of a function f is
then a set of coefficents w;; such that f =37, ; wlj;/;lj. The transform can be
computed using linear filtering operations.

A simple example of a discrete wavelet transform of a scalar function is shown
in Fig. 1 (see [11] for more details). In the picture, the original data is shown
on top, and below it is its partial wavelet transform. The wavelet coefficients
on different resolution levels are arranged on top of each other, with the finest
level coefficients at the top.

Fig. 1. Data and its wavelet coefficient levels, arranged from fine (top) to coarse (bot-
tom). Going from coarse to fine, wavelet coefficients shrink rapidly to 0 in smooth
areas, but stay large in rough areas. Note that the number of wavelet coeflicients is
doubled at each refinement step.

The wavelet transform procedure also yields a sequence of smoothed approx-
imations to the original data. Smoothed approximations of the previous ex-
ample, at selected levels, are shown in Fig. 2. The size of the data needed
to determine the approximation on each level drops by 1/2 as the levels get
coarser.

2.1 Wavelet filters

The discrete wavelet transform can be conveniently viewed as a fast (O(n)
where n is the number of data points) filtering operation, which simultaneously

TN T T

Ori gi nal Level 4
Level 2 Level 6

Fig. 2. Multiresolution approximation of data. The original data (level 0) and levels
2,4 and 6 are shown. Note the disappearance of high frequency noise and the gradual
smoothing effect.

builds a sequence of increasingly smoothed versions of the data and a sequence
storing the omitted details. The latter sequence forms the wavelet transform.

In more detail, we begin with four finite filters H, G, H and G, which satisfy
the conditions required for a biorthogonal [2] wavelet scheme. These condi-
tions are necessary to make the wavelet filtering and subsequent theoretical
properties work. There is a variety of filters to choose from.

The discrete wavelet transform (or wavelet decomposition) of a one-dimensional
data sequence s is the result of a repeated application of the two filters, the
scaling filter H and the wavelet filter G-

H H H
S —+ 8 — Sg —> ...
G G G (1)
N\ N\ N\

W1 W

The sequences s;, are the scaling coefficients of the data at resolution level
L.

The sequences w; are the wavelet coefficients at level [(depicted in Fig. 1).
All the wavelet coefficients together constitute the wavelet transform (wy;)
of the original data. This is a sequence indexed by both resolution level [
and position j.

The decomposition can be stopped at any level. Note that the number of scal-

ing and wavelet coefficients is halved at each level. The full wavelet transform
of data of length 2¥ has L levels and the same length as the original data. Re-
construction is performed in the opposite direction with the other two filters
H and G. The algorithms and filters can be generalized to higher dimensions.

2.2 Wavelel decomposition and multiresolution approzimation of curves

We can obtain a wavelet transform for a plane curve f = (z(t),y(?)) as the
transforms of the separate coordinate functions z(¢) and y(¢). This generalizes
to higher dimensions.

The wavelet transform of a curve yields not only the wavelet coefficients
but also the scaling coefficients for each level and coordinate. The scaling
coefficients completely determine the multiresolution approximation curves on
each level; this is analogous to the control points of a spline. The scaling
coefficients can also be used to give good piecewise linear approximations of
the curve, provided the wavelets are chosen suitably.

A technical quantity, the number of vanishing moments of the wavelet, de-
termines how fast the L? error of the multiresolution approximation decays
towards finer scales [17]. Rapid error decay is very desirable behavior: it means
that the curve approximations remain close to the original in the least squares
sense even as we decrease the resolution level. The number of vanishing mo-
ments allows us to control the approximation obtained with wavelets.

Choosing good approximations leads to tighter bounding boxes and efficient
collision checking. In this paper, we use the interpolating biorthogonal wavelets
called pseudocoiflets [15] which provide scaling coefficients that approximate
well. The wavelets have a relatively large number of vanishing moments (four)
and we thus obtain multiresolution approximation curves with small errors to
the original.

The example in Fig. 3 shows the scaling coefficients of an image boundary
curve at the finest resolution of the original data, denoted level 0 (512 bound-
ary points), as well as smoothed data at resolution level 2 (128 points) and
level 4 (only 32 boundary points). The quality of approximation is good; for
instance the level 0 and level 2 curves look almost identical at this resolution
even though the level 2 curve has 25% of the data. Even the level 4 curve,
with only 6.25% of the data, maintains the overall shape well.

Fig. 3. Piecewise linear multiresolution approximation of curve data, using scaling
coefficients. The original data (level 0) and levels 2 and 4 are shown.

Fig. 4. Sections of collision tree for testing collision with approaching point. Shown
in the figure are the error bounding boxes for the section and the linear segment at
the given resolution level.

3 The Collision Tree

The collision tree is a hierarchical representation of each curve which consists
of the approximating curve at each level. Each segment of the approximation
also stores an error bounding box for the line segment which is aligned with
the segment; these boxes bound the error between the original data and the
approximating curve, and are precomputed offline. Thus we obtain a binary
tree hierarchy of bounding boxes that is tightly fitted on the curve, matching
its multiresolution structure.

The virtual handle of the haptic interface is the configuration of the virtual
object being emulated by the haptic device; it is represented as a point in the
configuration space of the object (see also [19]). For the purpose of this paper,
we can assume that the object being emulated is a point in a two dimen-
sional Euclidean space. A boundary node of the collision tree corresponding
to a handle configuration is a node whose bounding box does not intersect
the handle, but its parent’s bounding box does. The boundary section of the
collision tree is the list of boundary nodes. The boundary section therefore
provides a representation of proximity to various parts of the curve. Fig. 4
shows the boundary sections at different times as the handle approaches a
particular point on the top left side of the image boundary curve.

The configuration of the virtual handle, v, is sampled at discrete times; we
denote the sample at time k as v®). To detect collision as the handle moves
from v to v+ we intersect the straight line segment connecting the two
points with the boxes of the boundary section. This intersection test is similar
to that in other hierarchical curve subdivision methods, such as strip trees [1]
and arc trees [5]. The line segment is intersected with each box using paramet-
ric line clipping, and candidate intersections are sorted by proximity to the
starting point v*). If an intersection is detected with a box at level [, the box
is refined to the next finer resolution level [— 1 and the process is repeated.
At the desired finest resolution level, or if the deadline for collision isolation
is passed, the segment is intersected with the approximation to the curve at
that level.

We use the fact that at the high sampling rates relative to the motion of the
handle, the boundary section will require only a small number of changes from
one time instance to the next. The change is typically either splitting a single
box or merging two, by descending or ascending the tree. The distances to the
boxes are easily computed and can be used to schedule box updates as in [8],
though we have not implemented this.

4 Contact Force and Transitions

The reaction force is now computed as follows. We interpret the incremental
motion of the real handle of the haptic device as a nominal motion of the vir-
tual handle from v*) to v**+1). The penetration of the virtual handle into the
boundary curve is interpreted as a hybrid force and position command. We
model the contact as frictionless, with specified stiffness; the normal compo-
nent of the penetration gives the reaction force while the tangential component
gives the sliding motion along the boundary. This results in a net change in

(*+1) The nominal

the applied force on the handle and the nominal position v
position is then checked for collision with adjacent regions of the curve. Note
that the virtual handle never penetrates the boundary, even though the real
handle may do so due to limits on the virtual stiffness — the visual display of
the handle on the boundary greatly enhances the perception of hard contact

(see also [19]).

In principle, contact transitions (e.g., transitions between single edge contact
and vertex contact) could be implemented in the same way as collision de-
tection. However, this is difficult using finite precision arithmetic. Instead, we
organize contact computations as follows. We consider the types of contact to
be states of a finite state machine with 3 states, labeled 0 (free space, no con-
tact), 1 (edge contact), and 2 (vertex contact). Only the following transitions
are allowed.

T

Note that transitions between contact states 0 and 2 occur, without loss of
generality, via state 1.

In state 0 (free space), the hierarchical collision test is performed as described
in §3. If a collision is detected, the commanded motion is clipped to the bound-
ary and a state transition occurs to state 1.

In state I (single edge contact), the motion of the handle is interpreted as a
hybrid position and force command; the component tangential to the edge is
considered to be the desired motion, while the component perpendicular to the
edge is considered a desired force. Note that we need a model of the contact
impedance to convert handle motion to force. This should ideally be based on
a material models of the curve and the handle. In the current implementation,
we assume that the impedance is associated with the handle only, and is an
isotropic stiffness (spring). This is a reasonable approximation of touching a
hard curve using a soft, compliant finger.

Based on this model, we look for the first contact transition during the com-
manded motion. The next time for transition to state 0 corresponds to the
time at which the contact force becomes zero. Similarly, the time for transition
to state 2 corresponds to the time of intersection with a neighboring edge.

In state 2 (vertex contact), the motion of the handle is interpreted as a force
command, with the handle impedance providing the conversion between han-
dle motion and force. This makes sense since the virtual handle position is
already completely constrained while the handle remains in this state. How-
ever, we must check if the resulting force can be supported by the contact.

Since the edges are assumed to be frictionless, each edge can only support a
force directed along the inward normal to the edge; thus a necessary condition
for remaining in vertex contact is that the total force is positively spanned
by the two edge normals. However, this condition treats convex and concave
corners identically. As a result, convex corners can sustain forces through a
finite range of angles; while this is theoretically possible, it is unlikely and
makes the corner feel “sticky.” Therefore we additionally impose a stable con-
tact requirement: the component of the handle force along an incident edge
should be directed towards the vertex; if not, a state transition occurs to state
1 (in contact with the edge which violated this requirement!).

1 If both edges fail the requirement, we pick one arbitrarily. It is possible to impose
additional criteria, for instance to select the edge that produces the greatest rate of

Fig. 5. Pantograph Haptic Interface

Geometric Joint

Models Commands Currents
Host > Handle — Joint
(SGl) Controller Controller Pantograph
- (T805) - (EMDC) Haptic
Device
Handle Joint Encoder
State State Pulses

Fig. 6. System Architecture
5 Results

The collision detection and response algorithms have been implemented on
an embedded controller connected to the Pantograph haptic device designed
by V. Hayward, et. al. [14]. See Fig. 5. It is a two degree of freedom, planar
device; the user grasps the handle and moves it in a rectangle approximately
16cm wide and 10cm long, much as one moves a mouse. Forces are imposed
on the handle using DC motors shown at the top of the figure.

The system architecture is shown in Fig. 6. The device is controlled at a 500
Hz servo rate by an “Embedded Module for Distributed Control” developed
in our lab. The geometry computations as well as the forward kinematics of
the closed loop linkage are performed by an embedded “Handle Controller,” a
T805 30MHz 32bit transputer with on-chip floating point hardware. The host
is an SGI Indy X7 which boots the system, loads geometry onto the handle
controller, as well as displays the virtual environment and handle at 60Hz
using the Open Inventor graphics library.

Fig. 7 shows the display of the Haptic Explorer program, interacting with an
image of the Olympic flame. The virtual handle is shown as a small white
sphere. The boundary curve was obtained from the image by edge detection
and linking. The Vista computer vision software developed by Pope and Lowe

decrease in potential energy; we feel this is unnecessary for the current application.

10

-

Level 2 (25% of original curve) Level 4 (6.25% of original curve)

Fig. 7. Example of haptic exploration of Olympic flame image

[13] was used for this purpose. Specifically, an implementation of the Canny
edge detector is used to extract edges, which are then linked using hysteresis
thresholding. The figure also shows the boundary curve and bounding boxes
at different resolution levels overlaid on the image. Note that bounding boxes
for even the level 4 curve are quite small, due to the good approximation
properties of our choice of wavelet basis.

The system performed well; users were able to interact with curves having
several hundred edges — at a servo rate of 500 Hz — using simple embedded
computers for collision detection and contact force computation. The abil-
ity to select resolution levels was also useful, since this allows denoising and
compression.

For future work, an important area is the improvement of the contact model.
Frictionless surfaces feel somewhat less realistic, and cause the handle to easily
slip off the curve being explored — incorporating a friction model might improve
the interaction. Another area that requires further development is automatic
selection of appropriate resolution levels, based on limitations of the hardware
and limitations of human perception. Finally, the addition of a rotational
degree of freedom to the haptic interface promises to be useful since this will
allow the user to probe the image “holding” any two dimensional shape, and
to feel the resulting forces and torque.

6 Conclusions

We have presented a method for interacting with two dimensional images
using haptic interfaces and force feedback. Our method extracts boundary
curves using edge detection and linking. We use a wavelet multiresolution
representation of the boundary curves, and a hierarchy of error bounding

11

boxes at each resolution level for fast collision detection. We use wavelets with
four vanishing moments; this yields approximations that fit the original data
well in the least-squares sense and produce small error boxes. We have also
described the computation of contact forces and contact transitions, based
on interpreting the input motion of the handle as a hybrid force/position
command. A prototype of the system has been implemented.

References

[1] D. Ballard, Strip trees: a hierarchical representation for curves, ACM
Communications, 24, pp. 310-321, 1981.

[2] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference
Series in Applied Mathematics 61, STAM, 1992.

[3] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing
the distance between complex objects in three dimensional space. IFEFE Journal
of Robotics and Automation, 4(2):193-203, April 1988.

[4] S. Gottschalk, M. C. Lin, and D. Manocha, OBBTree: A hierarchical
structure for rapid intersection detection. SIGGRAPH 96 — Computer Graphics
Proceedings, August 1996, 171-180.

[5] O. Gunther and S. Dominguez, Hierarchical schemes for curve representation,
IEEE Computer Graphics and Applications 13(3), May 1993, 55-63.

[6] P. M. Hubbard. Real-time collision detection and time-critical computing. In
First Workshop on Simulation and Interaction in Virtual Environments, pages
92-96, 1995.

[7]M. Lin and J. F. Canny. Efficient algorithms for incremental distance
computation. In Proceedings of the IEEFE International Conference on Robotics
and Automation, 1991.

[8] B. Mirtich and J. F. Canny. Impulse-based dynamic simulation of rigid bodies.
In Symposium on Interactive 3D Graphics, 1995.

[9] S. Mallat, A theory for multiresolution signal decomposition: the wavelet
representation, IEFFE Trans. PAMI 11, 1989, pp. 674—693.

[10] National Research Council. Virtual Reality — Scientific and Technological
Challenges. National Academy Press, 1995. Chapter 4: Haptic Interfaces.

[11]D. K. Pai and L.-M. Reissell, “Multiresolution Rough Terrain Motion
Planning,” to appear in IFEF Transactions on Robotics and Automation, 1997.

[12] M. Ponamgi, J. Cohen, M. Lin, and D. Manocha. Incremental algorithms
for collision detection between polyhedral models. 1In First Workshop on
Simulation and Interaction in Virtual Environments, pages 84-91, 1995.

12

[13] A. Pope and D. Lowe. Vista: A Software Environment for Computer Vision
Research. CVPR 1994. URL: http://www.cs.ubc.ca/nest/lci/vista/vista.html.

[14] C. Ramstein and V. Hayward. The pantograph: A large workspace haptic device
for a multi-modal human-computer interaction. Conference on Human Factors
in Computing Systems ACM/SIGCHI, 1994.

[15] L.-M. Reissell. Wavelet Multiresolution Representation of Curves and Surfaces.
Graphic Models and Image Processing, Vol.58, No.3, pp.198-217, 1996.

[16] Y. Shi and D. K. Pai, “Haptic Display of Visual Images,” to appear in
Proceedings of IEEE Virtual Reality Annual International Symposium (VRAIS
'97), Albuquerque, NM, March 1997.

[17] G. Strang. Wavelets and dilation equations: a brief introduction. SIAM Review
31(4), 1989, pp. 614-627.

[18] G. Zachmann and W. Felger. The boxtree: Enabling real-time and exact
collision detection of arbitrary polyhedra. In First Workshop on Simulation
and Interaction in Virtual Fnvironments, pages 104-113, 1995.

[19] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for
haptic display. In Proceedings of the IEFFE International Conference on Robotics
and Automation, pages 146-151, 1995.

13

