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Abstract

This paper presents a search algorithm for estimating posterior proba-
bilities in discrete Bayesian networks. 1t shows how conflicts (as used in
consistency-based diagnosis) can be adapted to speed up the search. Thisal-
gorithm isespecially suited to the case where there are skewed distributions,
although nothing about the algorithm or the definitions depends on skew-
ness of distributions. The general ideais to forward simulate the network,
based on the ‘normal’ values for each variable (the value with high proba-
bility given its parents). When a predicted value is at odds with the observa-
tions, we analyse which variables were responsible for the expectation fail-
ure — these form a conflict — and continue forward simulation considering
different values for these variables. This resultsin a set of possible worlds
from which posterior probabilities — together with error bounds — can be
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derived. Empirical resultswith Bayesian networks having tens of thousands
of nodes are presented.

Abbreviated title: Probabilistic conflicts for searching Bayes nets

1 Introduction

This paper is about evidential reasoning as typified by the problem of diagnosis
(determining what is inside an artifact/patient based on observations) or recog-
nition. This paper combines two approaches to model-based diagnosis, namely
Bayesian networks [12, 30] and consistency-based diagnosis[13, 38, 9, §].
Bayesian networks provide a general and natural representation for reasoning
under uncertainty. They have been successfully applied to such diverse areas as
medical diagnosis[15, 40, 26, 35], diagnosis of bottlenecks in computer systems
[1], circuit diagnosis[12, 41], fraud detection [10] and plan recognition [36].
Implementations of Bayesian networkshave been placedinto three classes[ 30,

17].

1. Exact methods that exploit the structure of the network to alow efficient
propagation of evidence (e.g., [30, 25, 23)).

2. Stochastic simulation methods that give estimates of probabilities by gener-
ating samples of instantiations of the network (e.g., [16, 29, 21, 11, 22]).

3. Search-based approximation techniques that search through a space of pos-
sible values to estimate probabilities (e.g., [18, 4]).

The method presented in this paper fallsinto the last class. This paper provides a
search-based techniquefor computing posterior probabilitiesin arbitrarily-structured
discrete! Bayesian networks. The algorithm gives away to bound the error of the
probability estimates.

Developed from logical notions of diagnosis, consistency-based diagnosisis
founded on the use of the conflict [38, 9, 8]. A conflict isaset of assumptions, the
conjunction of which isinconsistent with the observations and the system descrip-
tion. Consistency-based diagnosishasbeen used in many application areas (seethe

1Al of the variables have afinite set of possible values. We do not consider variables with an
infinite set of possible values.



papersin [14]). While these have been devel oped in the context of logical system
descriptions, probabilities have been used to reduce the combinatorial explosionin
the number of logical possibilities[9, 7]. Thispaper can be seenintwo ways. One
isasaway to add anotion of conflict toimprovethe speed and accuracy of asearch
algorithm for Bayesian networks. The second is as a way to extend the languages
of consistency-based diagnosisto allow for probabilistic system descriptions. See
Appendix A.

The problem of approximating probabilities in Bayesian networks to within
any fixed error (lessthan 0.5) isNP-hard [3]. Thismeansthat there can be no gen-
erally efficient procedure for approximating posterior or even prior probabilities
in Bayesian networks. It does not mean that there are not classes of Bayesian net-
worksfor which there are efficient algorithms. One such classisthe classof singly
connected Bayesian networks[30]. Another isthe classof Bayesian networkswith
sufficiently skewed probability distributions (all probabilitiesin the Bayesian net-
work are close to one or zero); the skewness of the probabilitiesis what is being
exploited for efficiency by the algorithm in this paper (see [31]).

For practical efficiency we have to exploit some aspect of the problem. Two
possibilities are to exploit structure or distributions [5]. While the efficient exact
methods exploit aspects of the network structure, we instead exploit aspects of the
probability distribution to gain efficiency. The exact methodswork well for sparse
networks (e.g., are linear for singly-connected networks [30]), but become ineffi-
cient when the networksbecomelesssparse. They do not takethe distributionsinto
account. The method in this paper uses no information about the structure of the
network, but rather has anichefor classes of problemswherethere are skewed dis-
tributions— conditional probabilities of variables given their parents are close to
one or zero (thisincludesthe prior probabilities of variables without parents). The
algorithm is efficient for these classes of problems, but becomes very inefficient
as the distributions become less extreme — see [31] for a detailed average-case
complexity analysis of the simple version of the algorithm presented here (with-
out conflicts). This algorithm should thus be seen as having an orthogonal niche
to the algorithmsthat exploit the structure for efficiency. This paper does not con-
sider how to exploit both structure and distributionstogether [5], but rather triesto
see how far we can get without considering network structure.

The genera idea can be stated simply. With skewed probabilities, there is a
‘normal’ value for each variable given its parents. By forward simulation on the
network, we instantiate variablesin turn to their normal value. This can be done
quickly with very little bookkeeping, and when probabilitiesare sufficiently skewed,
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the most likely world(s) contain much of the probability mass. When evidenceis
at odds with the predicted value, we analyse which variables are responsible for
this expectation failure — these form a conflict. We then consider the aternative
values for the variables in the conflict, and continue with the forward ssmulation.
Posterior probabilitieswith tight error bounds can be computed from the generated
assignments of valuesto the variables.

2 Bayesian Networks

We assume we have a set of random variables. Each random variable has an as-
sociated set of values. An atomic proposition is an assignment of a valueto a
random variable; variable X having value c iswrittenas X = ¢. A proposition is
made up of atomic propositions and the usual logical connectives.

A Bayesian networ k [30] isagraphical representation of (in)dependence amongst
random variables. A Bayesian network isadirected acyclic graph wherethe nodes
represent random variables’. If thereisan arc from variable B to variable A, B is
said to be a parent of A. The independence assumption of a Bayesian network is
that each variable isindependent of its non-descendents given its parents.

Suppose we have a Bayesian network with random variables X1, ..., X,,. The
parents of X; arewrittenasIly, = <X¢1, e ,Xikt_>. k; is the number of parents
of variable X;.

vals(X;) istheset of possiblevaluesof randomvariable X; . If C' = <Xc1 o Xe, >
isatuple of variables, then the set of values of ' isthe Cartesian product:

vals(C) = vals(X¢,) x - - x vals(Xg,).
Ifv = <Ucl,"',vcj> € vals(C),thenC = v(i.e.,<Xcl,---,ch> = <v01,---,vc]>)
means the proposition
XC’1 = V¢ /\-"/\ch :ch.
Associated with the Bayesian network are conditional probabilitieswhich give
the conditional probabilitiesof the valuesof X; depending on the valuesof its par-

ents I1x,. These consists of, for each v; € vals(X;) andv;, € vals(X;,), proba
bilities of theform

P(XZ = Ui|Xi1 = v JANCIEIEAN szz = viki)

2We will use the terms node (in a Bayesian network) and random variable interchangeably —
which is meant at any time should be clear from the context.
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For any probability distribution, we can compute a joint distribution by

P(Xl :Ul/\-"/\Xn :Un) :HP(XZ :Ui|Xi1 = v /\”'/\Xiki :Uiki)
=1
often written as .
=1
Thisis often given as the formal definition of a Bayesian network.

We call an assignment of valuesto all thevariablesapossibleworId, and write
‘wE X; = v, if X, isassignedvaluev; inworldw. Let 2 bethe set of all possible
worlds. The truth value of a proposition in a possible world is determined using
the standard truth tables. Possible worlds are important because the probability of
any proposition can be calculated from the probabilities of possible worlds:

Plg)= > P(w)

wewkEg

3 Searching possible worlds

Theidea behind our search algorithm is that we estimate conditional probabilities
by only enumerating afew of the possible worlds.

3.1 Orderingthevariables

The first thing to do is impose a total ordering on the variables that is consistent
withtheordering of the Bayesian network. Weindex therandomvariables X, ..., X,
so that the parents of a node have alower index than the node. This can always be
done as the nodes in a Bayesian network form a partial ordering. If the parents of
X; arelly, = (X;,,-++, X;, ), thetotal ordering presarvesi; < .

3.2 Search Tree

We are now in a position to determine a search tree for Bayesian networks’.

3This search tree is the same as the probability tree of [20] and corresponds to the semantic
trees used in theorem proving [ 2, Section 4.4], but with random variablesinstead of complementary
literals.



Figure 1: A searchtree for three variables.

Definition 3.1 A partial description isatuple of values (vq, - - -, v;) where each
v; isan element of the domain of variable X;. (i.e., v; € vals(X;)).

Partial description (v, - - -, v;) corresponds to the variable assignment X, =
Ul/\'--/\XJ' = v;.
The variables of partial description (vq, - - -, v;), written vars((vy,---,v;)) IS

the set {Xl, . ,XJ‘}.
The search tree has nodes labelled with partial descriptions, and is defined as
follows:

e Theroot of the treeislabelled with the empty tuple () (where ; = 0).

e The children of node labelled with (v, - - -, v;) are the nodes labelled with
(vy,---,v;,v) foreachv € vals(X;4;). In other words, the children of a
node correspond to the possible values of the next variable in the total or-
dering.

e Theleavesof thetreearelabelled withtuplesof theform (vy, - - -, v, ). These
correspond to possible worlds.

We will use the terms node and partial descriptions interchangeably — which is
meant at any time should be clear from the context.

For example, Figure1 showsasearchtreeonthreevariablesz1 (withvals(z1) =
{a,b}), 22 (withvals(22) = {a,b, c}) and 23 (withvals(23) = {¢, f}). Thetotal
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orderingisz1 < x2 < 3. The numbers at the bottom of the tree represent the
possible worlds. For example, world 7, defined by the partial description (b, a, t),
corresponds to the proposition 1 = b A 22 = a A 23 = .

We associate a probability with each partial description and so with each node
inthetree. The probability of the node labelled with (vy, - - -, v;) isthe probability
of the corresponding proposition whichis

P(Xlzvl/\/\X]:U])

J
= HP(XZ = Ui|Xi1 = v AR /\Xiki = viki)
=1

Thisis easy to compute; given the probability of the parent of the node, it can be
donein constant time.

The following lemma can be trivialy proved, and is the basis for the search
algorithm.

Lemma 3.2 The probability of anodein the search treeis equal to the sum of the
probabilities of the leaves that are descendents of the node.

This lemma lets us bound the probabilities of possible worlds by only gener-
ating afew of the possible worlds and placing bounds on the sizes of the possible
worlds we have not generated.

3.3 Searchingthe Search Tree

To compute probability estimates, we expand part of the search tree, and generate
some of the most likely possibleworlds. Figure 2 givesageneric search algorithm
that can be varied by changing which element is chosen from the queue. Thereare
many different search methods that can be used [27].

The algorithm maintains a priority queue () of partial descriptions. Each time
through the loop an element of ) isremoved; either it is atotal description (i.e.,
where 5 = n) inwhich case it isadded to 17/, the set of generated worlds, or else
its children are added to the queue.

If we let the algorithm run to completion it halts, and when it halts W is the
set of al partial descriptions corresponding to possible worlds. The correctness
doesn’t depend on the search strategy (i.e., which element ischosen from the queue
at each time).



Q:={0}h

W=A{};

While@ # {} do
choose and remove (vy, - - -, v;) from Q);
ifj=n

then W := W U {(vy,---,v;)}
eISGQ = Q U {<v17 T ,U]‘,U> S UGZS(XJ-H)}

Figure 2: Basic search algorithm

4 Estimating the Probabilities

If we let the above algorithm run to completion we have an exponential algorithm
for enumerating the possibleworlds that can be used for computing the prior prob-
ability of any proposition or conjunction of propositions. Thisisnot, however, the
point of this algorithm; we want to stop the algorithm part way through, and use
the worlds generated to estimate probabilities.

Weuse W, at the start of an iteration of the while loop, as an approximation to
the set of al possible worlds. This can be done irrespective of the search strategy
used.

4.1 Prior Probabilities

Suppose we want to compute P(g) for proposition g. At any stage (at the start of
an iteration of the while loop), the possible worlds can be divided into those that
arein W and those that will be generated from ().

Plg) = > P(w)
wewkEg
= ( 2 P(w))+( 2 P(w))
weW:wkyg we—-W:wkeg

We can easily compute the first of these sums, and can bound the second. The
second sum is greater than or equal to zero and isless than or equal to the sum of
the probabilities of the partial descriptionson the queue (using Lemma 3.2). This
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means that we can bound the probabilities of a proposition based on enumerating
just some of the possible worlds. Let

Py = > Pw)
weW:wkyg
PQ = Z P(Tf‘)
TEQ

Lemmad.l Py, < P(g) < Py + Po.

Asthe computation progresses, the probability massin the queue P approaches
zero and we get a better refinement on the value of P(g). Note that P, is mono-
tonically non-increasing through the loop (i.e Py stays the same or gets smaller
through the loop — P, decreases whenever an element with non-zero probabil-
ity isadded to W and stays the same otherwise). This thus forms the basis of an
“anytime” algorithm for Bayesian networks.

4.2 Posterior Probabilities

If wewant to compute the posterior probability of some g given some observations
obs, we can use the definition of conditional probability,

P(g N obs)

Plglobs) = P(obs)

We can estimate the conditional probability from our our estimates of P(g A
obs) and P(obs), (namely P4 " and Pg*) by noticing that each element of the
gueue can go towards implying obs A —g, obs A g or —obs. \We can easily prove
the inequality:

Lemma4.2

Pfc/]V/\obs Pf?VAObS Pf?VAObS + PQ
R IR I

It can be proved that P(g|obs) has the following bound:

Theorem 4.3
Pg/\obs Pg/\obs P
W < p(globs) < Wbim
Py + Py Py + Py



For aproof see Appendix B.
If we choose the midpoint as an estimate, the maximum error is
1 sz/]y{\obs _I_ PQ P{%//\Obs B PQ
2\ P+ Py PP+ Py)  2APF+ Po)

It is interesting that the error is independent of ¢g. Thus when we are generating
possible worlds for some observation, and want to have posterior estimates within
someerror, we can generate the required possi bleworldsindependently of the propo-
sition that we want to compute the probability of.

4.3 Refinementsto the Search Algorithm

Thereareanumber of refinementsthat can be carried out to thealgorithm of Figure
2, independently of the search strategy.

If wearetrying to determinethe valueof P(«), wedon't haveto expand a par-
tial description if it can be determined whether o or —« is entailed by the partial
description (and so also by all of its descendents). When conditioning on our ob-
servationswe can prune any partial description that isinconsistent with the obser-
vations — we know that all descendents of the partial description are inconsistent
with the observations, and so the probability of the pruned node can be removed
from consideration.

Figure 3 givesarefined agorithm for enumerating the possible worlds consis-
tent with obs. Here both @ and W, are sets of pairs (7, p) where 7 is a partial
description and p is the probability of 7. W, isthe set of the generated partial
descriptions that correspond to possible worldsin which obs istrue. Py and Pgb®
are the probabilities of @) and W, respectively. This algorithm shows explicitly
how these can be computed.

inconsistent(obs, (vq,- -+, v;)) istrueif obs isinconsistent with the partial de-
scription (vy, - - -, v;). If obs isaconjunction, then asthis stageis not reached un-
less (vy,---,v;_1) IS consistent with obs; in this case obs isinconsistent with the
partial descriptioniff obs contains aconjunct of the form X; = v wherev; # v’.

At any stage at the start of the whileloop, thisa gorithm directly gives Py and
P, For any g, Pp"VAObS can be computed by testing each member of W, to see
whether it is consistent with g. Alternatively, if ¢ is known before the search is
commenced, it can be incorporated into the search (each partial descriptionin @
and W, can be marked by whether it is consistent or inconsistent with ¢).
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WObS = {}7
P = 0;
While@ # {} do
choose and remove ((vq, - - -, v;), o) from Q;
if inconsistent(obs, (v1,---,v;))
then PQ = PQ -0
eseif j=n

then Wops := Wops U ({{v1, -+, v5) ,0)};
Pgbs = P + o
PQ = PQ — 0
ese@ = QU {((vi, -+, v5,0), 0 P(Xj1 = v|X1 = w1, -+, X; = v5))
cv € vals(Xj1)}

Figure 3: Search algorithm for finding worlds in which obs is true.

For the rest of this paper we consider only the problem of generating the ap-
propriate worlds and the error bounds, as thisis the difficult computational task.

5 A Diagnosis Example

In this section we describe how the search procedure can be applied to a smple
circuit diagnosisproblem (asin[7]), from which we can learn what problemsarise.
The tranglation of the circuit into a Bayesian network will follow that of Geffner
and Pearl [12].

The circuit is a sequence of one-bit adders, cascaded to form a multiple-bit
adder. We chose this example as it is simple to extend to large systems and also
because it was used in [7].

Note that thereis an efficient algorithm for such an example using clique tree
propagation [25, 23] that exploits the structure of the network to allow local prop-
agation of conditioning information. A slight variant of the example would make
clique tree propagation not work nearly as well. For example, if we add another
circuit to the output of the adders, the agorithm in this paper would work the same,
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Figure4: 1 bit adder
but the clique tree propagation would require larger cliques.

5.1 Representation

Figure 4 showsaonebit adder. Figure 5 shows a corresponding Bayesian network
under the assumption that the gates fail independently.

In this Bayesian network the random variable out-a2 is a binary random vari-
able with vals(out-a2) = {on, off }; out-a2 = on meansthat the output of gate
a2 ison, and out-a2 = off meansthe output of gate a2 is off. The variables:1,
12,13, out-al, out-z1, etc., have the same values. The random variable a20k has
four possible values: vals(a20k) = {ok, stuckl, stuck0, ab}; a20k = ok means
gate a2 isworking correctly, a20k = stuck1 means gate a2 is broken and always
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Figure 5: Bayesian network for a 1 bit adder
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a2ok 13 | out-x1 || out-a2
on | Off
ok on | on 1 0
ok on | off 0 1
ok off | on 0 1
ok off | off 0 |1
stuckl | — | — 1 0
stuckQ | — | — 0 1
ab - | = 05105

Figure 6: Conditional probability table for variable out-a2.

a2o0k
ok stuckl stuck( ab
0.99999 | 0.0000049 | 0.0000049 | 0.0000002

Figure 7: Conditional probability table for variable a20k.

produces on, a20k = stuck( means gate a2 is broken, and always produces off,
and a20k = ab means the gate isin an abnormal state that could produce either
value. The other ok variables have the same set of values.

The value of out-a2 depends on the values of the variables, 3, out-z1, and
a2ok. The conditional probabilitiesfor the variable out-a2 follow thetablein Fig-
ure 6. The conditional probabilitiesfor the outputs of other gatesis similar.

The value of a20k does not depend on any other variables. The valuesfor the
variablefollow the tablein Figure 7.* The probabilitiesfor other ok variables are
similar.

These one-bit adders can be cascaded to form multiple bit adders. Thisisdone
inthecircuit by connecting the output of gate o1 in one adder to input :3 of thefol-
lowing adder. In the Bayesian network, this is done by having multiple instances

4The numbers are made up. It may seem as though these probabilities are very extreme, but a
1000 bhit adder (with 5000 components), is only 95% reliable, if al of the gates are as reliable as
that givenin thistable.
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out-oly_; 135
on | off

on 1 0

off 0 |1

Figure 8: Conditional probability table for input 3 of adder .

of the network for the one-bit adder with the value of :3 depending on the vari-
able out-ol for the previous instance of the adder. The table for the probabilities
isgiveninFigure 8. Thevalue of the output of gate x2 of bit %, is called the output
of bit &; the value of the output of o1 is called the carry.

5.2 Computation

Suppose we apply the algorithm of Figure 3 to our cascaded adder example with
the partial description with the highest prior probability chosen each time through
theloop. Firsttheworldwith all gatesbeing ok isgenerated followed by theworlds
with single faults, then the double stuck-at faults are generated, etc. These are
pruned whenever they are found to be inconsistent with the observations. Thisis
similar to the candidate generator phase of [7]. From this candidate generation, we
can compute al of the probabilities that we need to.

To seewhat computational problem arises, consider a1000-bit adder. Suppose
al theinputs are zero, and all outputs, except bit &, are zero, and bit & outputs one
(thisexampleis from [7]). We first choose the most likely values of all variables
(e.g., the ok state for all of the status nodes) up to the variable that represents the
output of bit . The output of bit &, which is predicted to be zero, is inconsistent
withthe observations. At thisstage, we prunethe search (Section 4.3) and consider
thesingle-fault possibleworlds. For each bit after bit &, we have already assigned a
single fault (to account for the error in bit &), thusfor each of these gates, we only
consider the ok state. For the gates before bit &, we consider each of the single-
fault states. Most of these are useless since they will need to be combined with a
fault to account for the error at bit £.

Learning what we can about expectation failure and using thisinformation for
pruning the searchisthe basisfor the conflicts devel oped in the following sections.
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6 Search Strategy and Conflicts

The above example assumed a simple search strategy, but was not as good as it
could be because we did not use the information that we discovered during the
search. Here we present a solution to the search inefficiency by incorporating a
notion of conflict analogousto that used in consistency-based diagnosis|9, 38, §].

A ‘conflict set’ of Reiter [38] (a‘conflict’ of de Kleer and Williams[9]) isa set
of components such that, given the system description and the observations, not
all of the components can be normal®. In the probabilistic case, ‘normality’ corre-
spondsto avariable being assigned avalue that maximisesits probability givenits
parents. Conflicts correspondsto sets of variables al of which cannot be normal
given the observations. We exploit the fact that some (presumably large) propor-
tion of the probability mass on the variables in a conflict is inconsistent with the
observations. In this paper we will use a probabilistic bound to define a notion of
conflict that can be used in our search algorithm.

In order to make this most flexible and useful, the definitions do not appeal to
normality; a conflict can be based on any values of the variables being in conflict.
Like de Kleer, Mackworth and Reiter [8], we generalise conflictsto not depend on
normality, athough our notion of a conflict is very different to their’s as it does
not appeal to alogical specification of a system description, but rather extracts a
conflict directly from a Bayesian network and an observation.

6.1 Bounding Functions

For each partial description € ), weuse anestimate of P(m A obs) rather than an
estimate of P () in the computation. A notion of ‘conflict’ will be used to refine
this estimate.

Lemma6.1

P(obs) = PV({E’S + Z P(m A obs)
TEQR

See Appendix B for a proof of thislemma.

5See Appendix A for adescription of the relationship between the consi stency-based diagnosis
work and the probabilistic framework presented here.
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Lemmab6.2

Pf%,mbs < P(g A obs) < PéJVAObS + Z P(m A obs)
TEQR

Definition 6.3 A bounding function for observation obs is afunction f°** such
that if = isapartial description, f°°* () is anumber satisfying

P(m A obs) < fObS(W) < P(m).

Define the queue mass induced by f*** to be f§”* = >, f°"* (). Bounding
function f istighter than bounding function f’ |f f(m) < f/(n) for dl =.

The following theorem is analogous to Theorem 4.3, with asimilar proof.

Theorem 6.4 If f°** isabounding function for obs, then

Pg/\obs ng\obs _I_fobs
"Dobs | fobs — (g|ObS) — obs obs
Py + 13 Py + 1
The error bound is ,
15"

2(P + /3"

which is smaller than the previous estimate if f°*¢(7) < P(r) for somer € Q.
Tighter bounding functions give smaller error bounds.

In the next sections we define a notion of a conflict that allows us to tighten
bounding functions.

6.2 Overview of Algorithm

The general idea behind the algorithm isthat we proceed much asthe algorithmin
Figure 3, but choosing the partial description in the queue depending on the value
of its bounding function. Initially the bounding value we use is the probability of
the partial description.

When we find an expectation failure (the partial world we are considering is
inconsi stent with the observations), wetry to extract what information we canfrom
this expectation failure. Thisinformationisin terms of what is called a conflict.
Conflicts are used to make tighter bounding functions for elements of the queue.
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Q:={0}h

W= {}
C = {};
While@ # {} do
choose and remove (vq, - - -, v;) from Q;

if inconsistent(obs, X; = v;)
then C' := C U {extract_con flict(obs, (v1,---,v;))}
eseif j=n
then W := W U {(vy,---,v;)}
ese@ :=Q U {{vy,---,vj,v) : v € vals(X;41)}

Figure 9: Search algorithm for finding worlds in which conjunctive obs istrue.

By choosing the most likely partial descriptionsat any time, we are effectively
considering the “normal” values (the values whose conditional probabilitiesgiven
values for the parents are high) first, and want to extract probability bounds from
these.

The revised search algorithm is shown in Figure 9. Here C' is the set of con-
flicts that are used to define the “best” element of (). For simplicity of exposition,
we have used the simpler representation of Figure 2. The actual algorithm incor-
porates the improvements of Figure 3 into Figure 9.

There are a number of issues to be discussed:

1. How can aconflict be defined with only probabilistic information, and with-
out imposing an a priori constraint that all of the probabilities are extreme
(asin[34])?

How can conflicts be used by the search algorithm?
How can conflicts be discovered?
How does the use of conflicts affect the estimation of probabilities?

How much does the use of conflicts save in search time?

o v A~ W DN

In practice, how often can we detect asmall set of variablesthat form acon-
flict?
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In this paper we answer all but the last of these questions. Thelast questionwe
cannot answer until we have built many more systems for many diverse applica-
tions.

We assume for the rest of this paper that observations are conjunctions of as-
signments of valuesto different variables. It isstraightforward to extend thisanal -
ysistothe case where observations are conjunctionsof disjunctionsof assignments
of valuesto the same variable (i.e., of theform A;(X; = vi V.-V X; = vp)). Itis
not clear how the results could be extended to more general forms of observations,
but it is also not clear how one could actually observe more complex formulae.

6.3 Conflicts

Themainideaof aconflictisthat thereis some set of variables such that we can say
that some proportion of the probability mass on these variableswill beinconsistent
with the observations. Conflicts can be used to define atighter bounding function
to prune the search (Theorem 6.12).

Definition 6.5 If C isaset of variables, define the predecessorsof C' to be
C™ ={X|X isavariable,and (3Y € C'suchthat X < Y)and X ¢ C'}
where X' < Y meansthat variable X isbeforeY inthetotal ordering of variables.

We need to generalize a conflict from being a set of variables such that all of
the variables being ‘normal’ is inconsistent the observations. The generalisation
is that the sum of the probabilities of the values consistent with the observations
isless than some ¢ (for all values of the ancestors of these variables). Thisisthe
basis of the following definition:

Definition 6.6 Given a Bayesian network and an observation obs, a conflict isa
pair (C, ¢) where C isatuple of variablesand 0 < ¢ < 1 such that

max > P(C=v|C” =a)| <ce¢
a€vals(C—)
v € vals(C)
consis(C =vANC™ = a,obs)

where consis(C = v AC~ = a,0bs) istrueif C' = v A C~ = a isconsistent with
the observations. ¢ is called the bound of the conflict.
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Conflicts (C1, €1) and (Cs, €2) areindependent if ¢y N Cy = {}. If they are
independent, there is no single variable that can account for both conflicts. A set
of conflictsisindependent if they are pairwise independent.

The use of independent conflictsis given by the lemma:

Lemma6.7 If (Cy,¢) and (Cy, ;) are conflicts such that C; N Cy = {} then
(C1 U Oy, 6 X €y) isaconflict.

Example 6.8 Suppose we have a Bayesian network, where amongst the variables
are:7 and o7, and suppose that :7 has no parents and o7 has .7 asits only parent.
Supposethey are both Boolean variablesthat can take valuesfrom {on,off }, where
the probabilities for the network are P(i7 = on) = 0.5, P(o7 = on|i7 = on) =
0.1 and P(o7 = on|:7 = of f) = 0.8. With the observation :7 = on A 07 = on,
there are two independent conflicts, namely ((:7) ,0.5) and ((07) ,0.1). Theseare
independent and so thereisaconflict ((:7,07) ,0.05).

Because of these variables, the prior probability of obs must be at most 0.05.
Moreover, if m isapartial description that does not include variables:7 or o7, then
P(m A obs) < P(m) x 0.05. Itisthis last feature that we exploit for our search
algorithm.

Example 6.9 Suppose we have variables :7 and o7 as in example 6.8, but with
P(i7=o0n) = 0.7, P(o7 = on|:7 = on) = 0.6 and P(o7 = on|i7 = of f) = 0.9.
With the observation :7 = on A o7 = on, there are two independent conflicts,
namely ((:7) ,0.7) and ((07) , 0.6). These areindependent and so thereisaconflict
((17,07) ,0.42). Theway we have defined the notion of aconflict does not demand
that the conflicts are only for the “normal” values of the variables. The conflicts
here can be discovered by our algorithm below (if we are searching for more than
the most likely possible world), and can be used in exactly the same way as the
more extreme conflicts.

Example 6.10 Inour example of Section 5, with all inputszero, and bit 50 having
output one and all other outputs being zero, there is a conflict:

( ( out-250, v20ks0, 1350, out-0lag, 010kag, out-alag, alokag, 1249, out-a249, a20kyg,
0ut-:1;149, .1710]{?49, i149, 0Ut'$150, l’10k50, i150, ’L.250 >, 0.00003 >

Example 6.11 Suppose that in our cascaded adder example, the inputsto the cir-
cuit were observationsrather than defined as part of the circuit. Thisisuseful if we
do not know theinputsat thetimethe circuit isbuilt, or if someinputsareunknown
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during the diagnosis. We need prior probabilitiessuch as P (i1, = on) = 0.5. For
every bit £ for which input 1 is known, ({:1;},0.5) is a conflict. Although the
prior probabilities of diagnoses becomes very small quickly, the use of these con-
flicts can prune the search as though the observations of the inputs were given as
part of the network.

6.4 Refining the bounding function

Weuse aconflict to update the bounding function. Thesimplestidea’® isthat f°°*((v,, - - -

is the product of P({vy,---,v;)) and the the bound of a conflict that does not in-
volvethevariables{ X1, - - -, X;}. Thisresult isformalised in the following theo-
rem:

Theorem 6.12 Given observation obs, and aset of conflicts, the function f°** de-
fined by

[ (7) = P(m) x min{e: (C,¢) isaconflict suchthat C' Nwvars(m) = {}}

isabounding function of obs, wherevars(r) isthe set of variables assigned values
in the partial description .

Thistheorem is proved in Appendix B.

We want the bounding function to be as tight as possible, and so want the con-
flict with the smallest bound. Typically this conflict isthe product of independent
conflicts that involve variables that are after X; in thetotal ordering.

A discovered conflict updatesthe bounding functionfor all the variablesbefore
(inthetotal variable ordering) the conflict. The bounding functions of elements of
the queue evolves as computation progresses and conflicts are found.

Example 6.13 Just using the conflictsof Example6.8, theconflict ((:7, 07) , 0.05)
meansthat if =, isapartia description on the priority queue that does not contain
i7 or o7, then f°%(m,) = P(m;) x 0.05. Thus, contributes much lessto the error
estimate of the priority queue — all of the estimated probabilities have a smaller
error bound. If 7, contains:7 but not o7, then f°% () = P(my) x 0.1,

Becausetheerror estimatesare muchtighter using conflictsand the bounding func-
tion, fewer iterations are needed to obtain the same error bound.

6 A more sophisticated version is developed in Section 6.8.
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6.5 Extracting conflicts

We have now seen how to use conflicts, but it is not much use without being able
to find them. Rather than building an architecture (such as an ATMS[6]) to find
conflicts, we would like to extract them from our normal search. When we have
predicted something which turns out to be inconsistent with the observations, we
would like to learn from this, and extract conflicts from such expectation failures.

We would expect to be able to extract conflicts from expectation failures as an
expectationfailuregivesusset of variablesand values (apartial description) which
areinconsistent with the observations. Wewill try to find a subset of thesevariable
assignmentsthat is also a conflict.

Definition 6.14 Partial description 7 = (vy,---,v;) iS minimally inconsistent
with observation obs if X1 = vy A -+ A X; = v; isinconsistent with obs and
Xi=vi A--- A X, = v;_; ISconsistent with obs.

A minimally inconsistent partial description 7 = (vy,---,v;) partitions the
conjunctsin the observation into:

0bs™, the conjunction of those variable assignments of obs involving variables
before . in the total ordering. This conjunction is consistent with 7, as 7 is
minimally inconsistent.

0bs™ , the variable assignment in obs involving variable X;. 0bs™ isinconsistent
with .

0bs™, the conjunction of those variable assignments involving variables after ¢
in the total ordering. This conjunction is consistent with = (as obs™ and =
mention adigoint set of variables).

Definition 6.15 (C, ¢) isacounter to formula f with respect to observation obs
and partial description 7 if P(f|C~ = v) < ¢ whenever consis(C~ = v, 0bs™™).

Thisnotion of acounter isuseful, because we can compute conflictsfrom coun-
ters and we can extract counters from expectation failure in our search. The fol-
lowing theorem shows how to extract conflicts from counters:

Theorem 6.16 If (C ¢) isacounter to obs™ with respect to observation obs and
minimally inconsistent partial description = then (C, ¢) isaconflict with respect to
obs.
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For aproof see Appendix B.
Note that not all conflicts are from counters. Counters are meant to find those
conflictsthat can be extracted from expectation failure.

6.6 Extracting Counters

If 7 = (vy,- -+, v;) iIsminimally inconsistent with obs then, by our assumption of
the form of observations (Section 6.2), obs™ isof the form X; = v for somew.

Inthissection wedefinethe procedureextract counter(X; = v, 0bs, m) where
X, = visanassignment which isinconsistent with .

We will prove that extract_counter(X; = v,obs, ) will return a counter to
formula X; = v with respect to observation obs and partial description = whenever
X; = visinconsistent with .

We haveto find some C' so that we can bound P(X; = v|C~ = a).

If X; has parents Il x,, we use the independence assumption of Bayesian net-
works. By constructionwewill ensurethat C'~ doesnot contain X; or any ancestor
of X;, and so

uEvals(HXé)

For thisto be small, each product should be small. Wewould liketo use our expec-
tation failure to lead us to conflicts with a small bound. For each u € vals(Ily,)
wemakee, beaboundonthevalueof P(Ily, = u|C~ = a) and C,, to betheextra
elements needed to be added to the counter in order to achieve the bound. Wewant
to construct these values so that P(X; = v|C'~ = a) issmall.

In order to bound P(Ily, = u|C~ = a), consider three cases for each u €
vals(1lx,):

1. If obs = 1lx, # u, thenlet (Cy, e,) = ({},0).

2. 7 E lx, = u. As« considered the most likely assignments of values to
variables, and it did not assign v to X;, we expect P(X; = v|llx, = u) to
be low. In this case, we will return P(X; = v|llx, = u) asthis product’s
contribution”. Let (C., e,) = ({},1).

"This heuristic highlights the strength and the weakness of the approach presented in this paper.
It meansthat we only need to consider the values assigned to variablesin the current partial descrip-
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3. If r [£ llx, = u, thenthereissome X;, € Ilx, suchthat = [£ X; = u,,.
In this case, we have achoice: we can either (a) let (C, €,) = ({}, 1) or (b)
choose one such X; , and let

(Cu, €u) = extract_counter(X;, = u;,,o0bs,m).

(a) will typically produceasmaller counter set, and (b) will typically produce
asmaller bound. If P(X; = v|llx, = u) = 0, then it is clear we should
do (a). If the bound returned by extract_counter is greater or equal to 1,
we should also choose (a). In all our experiments these was the only cases
where we chose (a).

Note that the first two cases cannot co-occur as 7 is consistent with the observa-
tions. Alsoif I1x, = u isobserved, then = = 11y, = v and we do not include the
observed variable in the conflict found.

The valuereturned isthen

extract_counter(X; = v, obs, )

_ <{XZ»}U U . ¥ P(X¢:v|HXi:u)><6u>.

uEUals(HXi) uEUals(HXl.)

Note that if X; has no parents, then thisis the degenerate form of case 2, and
extract_counter(X; = v, obs, ) returns ({ X; }, P(X; = v)).
Figure 10 gives pseudo-codefor extract counter.

Theorem 6.17 If = [£ X, = v then extract_counter(X; = v, obs, ) returns a
counter to X; = v with respect to observation obs and partial description .

For aproof see Appendix B.

This theorem shows that the algorithm will give a counter (and so give us a
conflict), no matter which choice is made in the third case. Note that whether the
conflicts returned are minimal or not does not affect the correctness of the algo-
rithm; it only affectsthe efficiency. We could potentially search for the choicesthat

tion, and do not need to consider other variable assignments. If we tried to find a smaller bound
on the contribution of the product it would mean that we need to consider values other than those
we have aready explored — there are only alinear (in the number of variables) number of assign-
ments of valuesto variablesin the current partial description, but exponentially many alternative
assignments of valuesto variables.
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function extract_con flict(obs, (vy, - -+, v;))
observed(X; = v);
return extract_counter(X;, v, obs, (vy,---,v;)).

function extract_counter(X;,v, obs, m)

C:={X:};

p:=0;

if Ilx, = () thenreturn ({X;}, P(X; = v)) endif;

for each u € vals(Ilx,)

if consis(llx, = u,obs) and P(X; = v|llx, = u) >0
then if consis(Ilx, = u, )
thenp :=p+ P(X; = v|llx, = u)
elsesupposeu = (vi,, -+, vi,
choosei; suchthat 7 |= X;, # v; ;

let (Co, Fo) := extlract_counter(X;,,v;,, 0bs, m);
if Py <1
then C' := C' U Cy;

P:=P+ P(X, =v|llx, =u) x P
eseP:= P+ P(X; =v|llx, =u)
endif
endif
endif
endfor;
return (C, p)

Figure 10: Procedures exiract con flict and extract counter.
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will lead to the conflict with lowest bound. Our experiments were with a greedy
algorithm that chooses the first one found. Thereis a tradeoff between the com-
putational effort in finding minimal conflicts, and the extra pruning that minimal
conflicts allow.

Note that sometimes extract_counter may fail to find a useful counter if, for
example, = contains some small probability values. This will manifest itself in
returning abound that is larger than one. The counters may also not be very useful
if they are not independent of other counters found.

6.7 Empirical Case Study

The algorithms described above are independent of the search strategies used, al-
though the conflict algorithms only make sense if we pursue the most likely al-
ternatives at each step. This does not, however mean that we have to choose the
element of the queuewith thelowest bounding function at each stage. One promis-
ing ideaisto use adepth-first search, always choosing the most likely child of the
current partial description (i.e., hill-climbing with backtracking), adding any par-
tial description whose bounding function is below a threshold to a pseudo queue
(where we do not store the element in the queue, but keep track of the sum of the
bounding functions of the elements that we throw away). We can decrease the
threshold to get more accurate results. Thisis reminiscent of iterative-degpening
search [24], but asweare not concerned with finding themost likely possibleworld,
but aset of most likely worlds, we do not haveto worry about decreasing thethresh-
old to the maximum value it could obtain. Any threshold will give correct results
— asmaller threshold will give more accurate results (and take longer). All of the
results presented here are for using one threshold.

The experimentswe carried out were limited to understanding the behaviour of
the algorithm on cascaded n.-bit adder example, with al inputs zero and all output
bits being zero, except for the output of bit & (i.e., the value of x2;) which had
value one. We only used the stuck-at faults and no ab faults (see Section 5), in
order to make the results more comprehensible — with the use of ab faults, the
results are similar to that presented here. We ran the program using a bounded
depth-first search (pruning the depth-first search when the f-value gets below a
threshold), generating the 5 most likely possibleworlds®. Note that an ».-bit adder

8These correspond to x20k, = stuckl, xloky = stuckl, oloky_, = stuckl, a20ky_; =
stuckl and aloky_q = stuckl.
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| error bit | 2| 25 | 50 | 75 | 100 |

run time (no conflicts) 10.8 43.2 145.2 315.3 558.8
run time (with conflicts) 155 12.8 9.7 6.6 3.6
error (no conflicts) 0.00249 | 0.00937 | 0.0303 | 0.0618 | 0.0997
error (with conflicts) 0.00249 | 0.00261 | 0.00273 | 0.00285 | 0.00298

Figure 11: Running time and posterior error as a function of error bit in a 100-bit
adder, with threshold of 0.000001 that produces 5 most likely worlds.

has 5n gates and corresponds to a Bayesian network with 13n nodes.

All times are based on a SICStus Prolog program running on aNeX Tstation (a
68040-based machine). All times are in seconds. The code is available from the
author.

Asdiscussed in Section 5.2, the main problem with the search al gorithm with-
out conflicts, for our example, was how the runtime depended on the bit % that was
faulty. Figure 11 shows how run time depends on the bit chosen for the program
with no conflictsand for the program with conflicts. Thiswasfor the 100-bit adder
(Bayesian network with 1300 nodes). The differencein timesfor error bit 2 indi-
cates the overhead in using conflicts (as conflicts for this case give us nothing).
This table also gives the error in posterior probability estimation. This shows the
power of the use of the bounding function to give asmaller probability bound.

Consider how the program that uses conflicts runs. we pursue one world until
bit &, then pursue 5 worlds separately from bits £ to ». Thus we may estimate the
time as proportional to k£ + 5(n — k). Thisfitsthe experimental results extremely
well.

The second experiment was with the asymptotic behaviour as the size of the
network wasincreased. Figure 12 showsthe run-timefor finding the 5 most likely
possible worlds, as afunction of circuit size. In each of these the error bit wasthe
middle bit of the circuit (i.e., & = 7). Thiswas chosen asit is the average time
over al of theerror bits(see Figure 11). Notethe linear time that was predicted by
the k + 5(n — k) formula. Also the posterior error is approximately linear in the
size of the circuit.

Finally, the results from double errors, are very similar. For a 100-bit adder,
with ones observed at bits 30 and 70, the program took 34 seconds to find the 25
most likely possible worlds.
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# bits 100 500 | 1000 | 2000 | 3000

# gates 500 2500 5000 | 10000 | 15000
# nodes 1300 6500 | 13000 | 26000 | 39000
run time 9.7 46.2 092.1| 1828 | 271.3

error 0.00273 | 0.0135 | 0.0267 | 0.0519 | 0.0758

Figure 12: Running time and posterior error as a function of size of multiple-bit
adder for the algorithm with conflicts with threshold of 0.000001.

6.8 Distributed Conflicts

The above analysis works well when the conflicts are clustered together. Thiswas
also a property of the example of the preceding section. We prune the bounding
function for all variablesthat come before (in the total ordering of variables) all of
the variables in the conflict.

We can also prune the bounding function for variables that come between (in
the total ordering of nodes) variablesin a conflict. Theideaisto consider the re-
maining probability mass that the conflict promises, and use this as the bound.

Definition 6.18 If 7 = (vy,---,v;) isapartial description and (C, ¢) is aconflict
then the contribution of C' tor is

€
CO{Xorr, . X0,
< e X icjnxiec P(Xi = vil Xiy = v A A X, = %)>

Note that sometimes the contribution of a conflict to a partial description may
contain a bound that is greater than one. In such cases, the contribution is of no
use. The theorem below explicitly allows us to ignore these contributions that do
not help.

We build abounding function from contributions of conflictsto partial descrip-
tions. The theorem below is analogous to Theorem 6.12.

Theorem 6.19 Any function f°**(r) constructed in thefollowing way is abound-
ing function for obs. For each «, select asequence (C, 1) , - - -, (C, ;) Of contri-
butions of conflictsto partial description =, suchthateache; < 1andC;NC; = {}
fori # j. Let fo**(m) = P(m) x [1%, e
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For aproof see Appendix B.

For example, suppose we have exactly one member X; of aconflict that is be-
fore node X; in the total ordering of variables and we are considering partial de-
scription 7 (with ; elements). If X; wasassigned a high probability in 7, then the
rest of the probability mass of the conflict that isinconsi stent with the observations
must be borne by variables after X;, and thus after X;. If X; wasassigned alow
probability in 7, then proportionately less (if any at all) of the probability of the
conflict can be taken into account for determining the bounding function for .

6.9 Using overlapping conflicts

For the example of Section 6.7 wejust found one conflict for each expectation fail-
ure and used it. In this example, there are multiple conflicts due to that fact that
there are two ways the or-gate o1 could have output a one.

Example 6.20 One other conflict for Example 6.10 is:
( ( out-2250, out-r20ksg, out-x1s0, out-r1oksg, ils0, 1250, 1350, 0lag, 010kag, out-
alyg, alokag, 1249, out-a249, a20ksg, 1349, 014, 010ksg, out-alyg, alokss, 1245, out-
a24g, a20kag, 1348, 0147, 0lokar, out-alyr, alokyr, 1247, out-a247, a20ky7, 1347, - - ),
0.000745 ).

The intersection of the set of variables of the two given conflictsis {out-225,
220ksq, 1350, out-0lag, 0l0kag, out-al g, alokag, out-a2.49, a20ksq, out-1249, out-
x50, zloksg, 1150, 1250 }-

The variables that can have other values (with non-zero probability) are the
ok variables. What is interesting is that the five ok variables in the intersection
correspond exactly to the variablesthat have different valuesin thefivemost likely
possible worlds. Thisis not a coincidence.

The intersection does not form a conflict. However, for every variable in the
intersection to have anormal value, there must be adouble error; there must be an
abnormal probability assignment in each of the conflicts.

It may seem as though we need a new concept to characterise such sets of vari-
ableswherethe only worldsinwhich al of the variablesdo not have normal values
have extremely low probability (corresponding to double errors). There is how-
ever, no need to do this; the current algorithm can use both conflicts so that it only
considers other values for variables outside of the intersection when it is consider-
ing extremely unlikely worlds.
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When we consider the bounding function for variables not in either conflict,
we use the first conflict as it has the smallest bound. When we consider variables
not in the intersection of the conflicts, we can use the whichever conflict the vari-
ableisnot in for the bounding function. It is only when considering variablesin
the intersection that the bounding function is discounted by the contribution of the
conflicts. Thusthe general principle of using the conflictsthat provide the small-
est bounding functions handles the intersection of conflicts appropriately, without
needing any extra machinery.

7 Comparison with other systems

The branch and bound search is very similar to the candidate enumeration of de
Kleer’'s focusing mechanism [7]. We have considered a purely probabilistic ver-
sion of de Kleer’s conflicts. We have extended the language to Bayesian networks
(see Appendix A). We aso can bound the errors in our probabilistic estimates,
which de Kleer cannot do. One of the features of our work is that finding minimal
conflictsis not essential to the correctness of the program, but only to efficiency.
Thus we can explore the idea of saving time by finding useful, but non-minimal
conflicts quickly.

The use of search to bound the probabilities in a Bayesian network is closely
related to bounded conditioning [19], where athe valuesfor the cutset variablesin
aBayesian network are enumerated, and the polytree algorithm [28] isused for the
resulting singly connected networks. Instead of enumerating the variables of the
cutsets, we enumerate all of the variables. This makes the algorithm much sim-
pler, and allowsfor fast processing. Bounded conditioning has no analogueto the
conflicts of this paper.

Shimony and Charniak [39], Poole [32] and D’ Ambrosio [4] have proposed
back-chaining search algorithms for Bayesian networks. None of these are nearly
as efficient as the one presented here. Even if we consider finding the single most
normal world, thealgorithm here correspondsto forward chaining on definite clauses
(see[33]), which can be donein linear time, but backward chaining has to search
and takes potentially exponential time.

This paper deliberately takes the extreme position of seeing how far we can get
when we exploit the distributions and not the structure of the network. Hopefully
this can shed light on the algorithmsthat use both structure and distribution to gain
efficiency (e.g., [4]).
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8 Conclusion

This paper presented asimple search strategy for estimating posterior probabilities
in Bayesian networks which can give atight bound on the error. We then showed
how anotion of conflict borrowed from model-based diagnosis can be used to im-
prove efficiency and accuracy.

For most purposes (when we do not want to have very accurate probabilities),
the algorithm has the following gestalt feel. We forward simulate the Bayesian
network (by choosing the most likely values for each variable) until wefind a pre-
dicted value that is inconsistent with the observations. When we find such an ex-
pectation failure, we extract a conflict from this failure. We only consider non-
normal values for the variables in the conflict, and keep doing a forward simu-
lation. We repeat this for each expectation failure, until we can find a consistent
Bayesian network assignment (i.e., the forward simulation has assigned avalue to
all variables) for each of the non-normal assignments of the conflicts (removing
each world that gets too unlikely). We use the worlds produced to predict con-
ditional probabilities with a given error. When the distributions are skewed this
produces small error bounds.

The main complexity isin the forward simulation which can be done in time
linear in the number of variables (assuming a bounded number of parentsfor each
variable), and finding conflicts which can be done in time linear to the size of the
conflict found (finding a minimal conflict is more expensive). This needs to be
done the number of times equal to the product of the size of the conflictsfound. In
the worst case this reduces to the algorithm without conflicts, (but with the extra
(linear) cost of finding the conflicts) which has good expected complexity when
there are sufficiently skewed distributions [31].

One of the aims of this work isto unify model-based diagnosis (e.g., [7]) and
probabilistic modelling (e.g., [30]). Although they may look very different, a co-
herent synthesisis possible, which | hope | have showed in this paper.

A A Comparison of Representations

In this appendix we describe the relationship of the above definition of Bayesian
networksto theformalizationsof model based diagnosisof Reiter [38] and deKleer,
Mackworth and Reiter [8], and to de Kleer’s incorporation of probabilities into
model-based diagnosis[7].
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In the frameworks of [38] and [8], a system is described in terms of a triple
(SD,COMPS,0BS), where SD isthe system description, COM PSS isthe set
of componentsand OB S isaset of observations.

In the probabilistic framework the given probabilities serve the same purpose
as S D. Those worldswhich are inconsistent with S D will have probability 0. In-
stead of writing the formula

out(G) =on « type(G) = and_gate A\ inl(G) = on
Nin2(G) = on A ok(G)

we write?

Plout(G) =on | type(G) = and_gate N inl(G) = on
Nin2(G) = on A st(G) = ok) = 1.

The probability also places a measure over the remaining worlds. The prob-
abilistic framework is more general in that it allows for ‘noise’; for example, it
allows usto state that some output israrely true, aswell as being able to state that
itisnever true. Thisiseven moreimportant for domains where thereisno certain
knowledge, such as medical diagnosis.

In the probabilistic framework, thereis no correspondenceto COM P .S of [38]
and [8]. The observations of both frameworks, however, are identical.

A possible world here can be compared with the formulaD(Cp, Cn), a* state
of the system [8], whichis

/\ AB(C)

ceCp

A l A ﬁAB(C)]

ceCn

The main differenceisthat D(C'p, C'n) does not specify the value of al variables.
A state remains agnostic about internal values (those which do not follow from
the status of components). A possible world specifies not only the status of com-
ponents, but of all values. For example, the value of the output of an abnormal
gate may not be specified by the state of the system. However, there will be dif-
ferent possible worlds for each of the values of the output. We are interested in
having these different possible worlds because they have different properties and

?Here we use the random variable (term) st(() to be the status of GG. This has values, for ex-
ample, ok, stuckl, stuck0, ab. Thus ok(G) will bethe sameas st(G) = ok.
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predictions. Even without ruling out any of the states of the components, different
possible worlds may be ruled out (by having a prior probability of zero, or being
inconsistent with the observations) by considering values of other variables and
observations. Because he did not treat these as different worlds, de Kleer [7] had
to resort to the dynamic use of Bayes rule and maximum entropy. We do not need
to do this. Having a slightly smaller grain size of possible worlds means we can
treat all values symmetrically. It also meansthat we can get good estimates of the
errorsin our probability estimates. Rather than just being able to return the most
likely diagnoses, we can use the most likely possible worlds to estimate arbitrary
conditional probabilities within some bound.

de Kleer et. a. [8] do not specify what a component is (what is a component
isinput to their formalism). One way we can make their framework closer to the
probabilistic oneistoinvent new componentswithin their framework. These com-
ponents will be oracles that determine the values that are unspecified in the stete.
These can be compared to the use of ‘stuck at zero’ (stuck0) and ‘stuck at one
(stuckl) failure states. Thisinvention of ‘causal hypotheses can be donein gen-
eral to produce exactly the worlds in Bayesian networks [33].

Note that because a possible world specifiesthe values of all variables, thereis
no difference between a possible world which is consistent with aformula f and
onewhich entails f. That is, for possibleworld w, w | fiff w £ —f (thiscan be
easily proved by induction on the size of formula f). In either case we say that f
istruein the possible world.

A diagnosis of [8] correspondsto a possible world, with non-zero probability,
in which obs istrue.

deKleer et. a. [8] consider how to characterise the set of diagnoses of the sys-
tem. Intheprobabilistic framework, we consider what we want to do with the diag-
noses. We want the diagnosesin order to make decisions. These are, for example,
decisionsto replace components, to seek more information, to apply treatments, to
givetests, etc. Decision theory (see, e.g., [37]) gives a normative theory of what
decisionsto make. Thereisawell developed theory about what tests provide the
best information and the expected value of making atest or of carrying out a par-
ticular action. In order to make good decisions we need the probability of various
formulae given the observations. Approximating these probabilities within some
error isthetask considered in this paper.
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B Proofs

Theorem 4.3
Pg/\obs Pg/\obs P
W < P(globs) < Wbim
Py® + Pg Py + Pg

Proof: Consider what happensto the elementsof the queue. Let o bethe propor-
tion of the possible worlds that are descendents of elements of the priority queue
inwhich obs A =g istrue. Let 3 be the proportion in which obs A g istrue. Then
a + 3 isthe proportion in which obs istrue.

Asall of the possible worlds are either in W or are descendents of el ements of
the priority queue, we have

Pg/\obs —|—/8P
910%) = B (a4 B P

Wewant to maximisethisformulaunder theconstraintsthat0 < o < 1,0 < 3 <1
and0 < a+ # < 1. Thereare no internal extrema in this formula, and so the
maxima occur at the extremes. Thesearea = f = 0,a = 1 A3 = 0 and
a = 0 A3 = 1, which correspond to the three values in Lemma 4.2, and the
theorem follows directly from Lemma4.2. O

Theorem 6.1

P(obs) = PV({E’S + Z P(m A obs)
TEQR

Proof:

P(obs) = Z P(w)

weiwobs

=( > P<w>)+( > P<w>)

weW wl=obs we—W:iwkobs
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=P$§S+Z( 2 P(w))

TEQ \weQ-W:wkobsAT

= Pﬁ?s + Z P(m A obs)
TEQR
O

Theorem 6.12 Given observation obs, and a set of conflicts, the function fo*
defined by

[ (m) = P(r) x min{e : (C,¢) isaconflict suchthat C N = = {}}

is abounding function of obs.

Proof: The only thing non-trivial to proveisthat P(m A obs) < P(m) x e. Let
Ct={X1,-, X,}-C—-C~.LetC~" = C~N{Xj41, -+, X, }. Thereisaiso-
morphism between the set of possibleworldsconsistent with 7 and {<C+, C, C"> =
(vtv, o) A (vFo,07) € vals(<0+, C, C_l>)}.

The idea of the proof is that the variables can be partitioned into the sets C'*,
C,C~"and {X;,---, X;}. Wefirst sum out the variablesin C*, then sum out the
variablesin C~'.

P(m A obs)

= QZ':: b P(w)
= Z P(<C+,C,C_l> = <v+,v,v_>/\7r)
(v v Yevals((CF C.C"))
consis <0+ c,c™ >:< jv,v7 ) 0bs)
P(Ct =v™| <C’, C_l> = (v, ") AT)
= > xP(C =v|C~" =v™ Am)
(vF o~ Yevals({Ct,C,0~")) x P(C~" = v~|r) x P(n)
consis <c+ c,c™ >:< jv,v7 ) ,0bs)
P(Ct =vT| <C, C'_/> = (v,v7)AT)
P(m) x > xP(C =v|C~ =v™ A )
(vt >Evals (ct.c.07'Y) xP(C~" = v~|m)
comsis((:0="Y= (1= o)

IA
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= P(m) % > P(C=v|C~" =v" Am)x P(C™" =v7|n)

<U,v_>€vals(<0,0_l>)
consis(<C,C_l>:<v,U_>,obs)

< P(m) % > P(C =v|C™ =a)
vEvals(C)
consis(<C,C_>:(U,a>,obs)
< P(m) xe
O

Theorem 6.16 If (C, ¢) isacounter to obs™ with respect to observation obs and
minimally inconsistent partial description then (€, ¢) isaconflict with respect to
obs.

Proof: Suppose (C, ¢) isacounter to obs™ with respect to observation obs and
partial description .

¢ > P(obs™|C™ = a)
= > P(C =v|C™ =a)
vEvals(C)
consis(C=v,0b5™0)
> P(C =v|C™ =a)

vEvals(C)

v

consis(C=vAC' ™ =a,obs)

O

Theorem 6.17 If 7 £ X, = v then extract_counter(X; = v,o0bs, ) returnsa
counter to X; = v with respect to observation obs and partial description .

Proof: First, thealgorithm stops, asthere arefinitely many values of the parents,
and so thefor-loop isevaluated finitely many times, and each recursion reducesthe
number of parents of the node by at least one, and so thereisno infinite recursion.

We caninductively assumethat thetheoremholdsfor al subcallsto extract _counter.
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Toshow that (C, ¢) returned by extract_counter(X; = v, obs, w) satisfies P(X; =
v|C~ = v) < e whenever consis(C~ = v, 0bs™™).

We use the following lemma: consis(C~ = v,0bs™ ) impliesC~ = v |
obs™ . Thisis because (' does not include any variablein obs™ and '~ = v as-
signsavalueto every variable before C' in thetotal ordering of variables. To show
this, consider that avariable X ; isonly added to C when extract counter(X; - -)
iscalled, andthisisnever calledif X; isassignedavalueinobs™ . If X; isassigned
avaluein obs™, then each X; = v iseither inconsistent with obs or is entailed by
m, and so thereisno call to exiract _counter with thisvariable.

Supposeconsis(C~ = v,0bs™ ) and X; hasparents1ly,. Foreachu € vals(1ly,),
we know that P(Ilx, = u|C~ = a) < ¢, Whenever consis(C~ = v,0bs™) by
the inductive assumption and because all probabilitiesare < 1. Then,

u€vals(Ix;)
< Y P(Xi=v|llx, =u) X €,
uEUals(HXi)
= €
O

Theorem 6.19 Any function f°** () constructedin thefollowing way isabound-
ing function for obs. For each m, select asequence (C1, ¢1) , - - -, (Ch, € ) Of contri-
butions of conflictsto partial description =, suchthateache; < 1andC;NC; = {}
fori # j. Let fo**(r) = P(m) x [1%, &

Proof: LetC =y x---xCy,ande = [[%, ¢. Let C! bethe part of the conflict
fromwhich C; isacontribution, whichiscoveredinm = (vy,-- -, v;), and ¢; bethe
corresponding bound (i.e., (C; U C!, ¢}) formsaconflict,and C! C {X1,---, X;}).

Toshow P(mAobs) < P(m)xe. All of the proof of Theorem 6.12 goesthrough
up to the last step.

P(m A obs)
< P(m) % > P(C =v|C™ =a)
vevals(C)
consis((C,C ) =(v,a),0bs)
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= P(r) x > [I P(Ci=wi|C™ =a)
(v1,+vk)Evals({C1,-+,CL)) -
consi5(<cl7"'7Okvc_>:<vl7"'7Uk7a>70b5)

k
= P(m) x H Z P(C; =v|C™ =a)
=1 v; Evals(C;)
consis(<0¢,0_>:(U,‘,a>,obs)

P(C] = v|[llg: = T1,1)

= P(m)x]] > P(C; =v|C™ =a) x P(C! = vl[ler = IL,)

=1 v; Evals(C;) !

consis((Ci,C_ >:(U,‘,a>,obs)

Z P(C’Z — Ui|0_ = q) X P(Cz/ = ”L)ZI|H01/ = H’U:)
v; €vals(C;)
k . —_
conszs(<C1‘,C >=<Ui7f1>70b5)
= P
(m) =11 P(C{ = ]l = 11,
k ¢
< P -
> (7T) X 221_[1 P(CZ/ — 'UZ/|HC' = HU/)
e P(Tf') X €
O
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