A Framework for Decision-Theoretic Planning |: Combining the Situation
Calculus, Conditional Plans, Probability and Utility*

David Poole
Department of Computer Science
University of British Columbia
Vancouver, B.C., Canada V6T 174
pool e@s. ubc. ca
http://ww. cs. ubc. ca/ spi der/ pool e

Abstract

This paper shows how we can combine logical
representations of actions and decision theory in
such amanner that seemsnatural for both. In par-
ticular we assume an axiomatization of the do-
main in terms of situation calculus, using what
isessentially Reiter’s solution to the frame prob-
lem, in terms of the completion of the axioms
defining the state change. Uncertainty is handled
in terms of the independent choice logic, which
allows for independent choices and a logic pro-
gram that gives the consequences of the choices.
As part of the conseguences are a specification
of the utility of (final) states. The robot adopts
robot plans, similar to the GOL OG programming
language. Within this logic, we can define the
expected utility of a conditional plan, based on
the axiomatization of the actions, the uncertainty
and the utility. The ‘planning’ problem isto find
the plan with the highest expected utility. This
isrelated to recent structured representations for
POMDPSs; here we use stochastic situation cal-
culus rules to specify the state transition func-
tion and the reward/value function. Finaly we
show that with stochastic frame axioms, actions
representationsin probabilistic STRIPS are expo-
nentially larger than using the representation pro-
posed here.

1 Introduction

The combination of decision theory and planningisvery ap-
pealing. Sincethe combination was advocated in [Feldman
and Sproull, 1975], there has been a recent revival of inter-
est. The general idea of planning isto construct a sequence

This work was supported by Institute for Robotics and Intel-
ligent Systems, Project IC-7 and Natural Sciences and Engineer-
ing Research Council of Canada Operating Grant OGPO044121.
Thanksto Craig Boutilier, Ronen Brafman and ChrisGeib for giv-
ing me a hard time about this paper.

of steps, perhaps conditional on observations that solves a
goa. In decision-theoretic planning, this is generalised to
the case where there is uncertainty about the environment
and we are concerned, not only with solving a ‘goal’, but
what happens under any of the contingencies. Goal solving
is extended to the problem of maximizing the agent’s ex-
pected utility, where here the utility is an arbitrary function
of thefinal state.

Recently there have been claims made that Markov deci-
sion processes (M DPs) [Puterman, 1990] are the appropri-
ate framework for developing decision theoretic planners
(e.g., [Boutilier and Puterman, 1995; Dean et al., 1993]). In
MDPstheideaisto construct policies— functionsfrom ob-
served state into actionsthat maximise long run cumulative
(usually discounted) reward. It iswrong to equate decision
theory with creating policies; decision theory can be used to
select plans, and policies can be considered independently
of decision theory [Schoppers, 1987]. Even when solving
partially observable MDPs (POMDPs), where apolicy isa
functionfrom belief statesinto actions, it isoften more con-
venient to useapolicy tree[Kaelbling et al., 1996], whichis
much more like arobot plan as devel oped here — see Sec-
tion 7.

Rather than assuming robots have policies [Poole, 1995¢],
we can instead consider robot plans as in GOLOG
[Levesque et al., 1996]. These plans consider sequences
of steps, with conditions and loops, rather than reactive
strategies. In this paper we restrict ourselvesto conditional
plans; we do not consider loops or nondeterministic choice,
although these also could be considered (see Section 6).
Unlike GOLOG, and like Levesque [1996], the conditions
in the branching can be ‘observations about the world or
values received by sensors

Asin GOLOG, we assumethat the effects of actionsarerep-
resented in the situation calculus. In particul ar we adopt Re-
iter’s[1991] solution to the frame problem. Our represen-
tation issimpler in that we do not assume that actions have
preconditions — all actions can be attempted at any time,
the effects of these actions can depend on what else istrue
in the world. Thisis important because the agent may not
know whether the preconditions of an action hold, but, for

example, may be sure enough to want to try the action.

All of the uncertainty in our rules is relegated to in-
dependent choices as in the independent choice logic
[Poole, 1995b] (an extension of probabilistic Horn abduc-
tion [Poole, 1993]). This allows for a clean separation of
the compl eteness assumed by Reiter’ ssolution to the frame
problem and the uncertainty we need for decision theory.

Beforewe describethetheory there are some design choices
incorporated into the framework:

¢ In the deterministic case, the trgjectory of actions by
the (single) agent up to some time point determines
what is true at that point. Thus, the trgjectory of ac-
tions, as encapsulated by the* situation’ term of the sit-
uation calculus [McCarthy and Hayes, 1969; Reiter,
1991] can be used to denote the state, asisdonein the
traditional situation calculus. However, when dealing
with uncertainty, thetrajectory of an agent’sactionsup
to a point, does not uniquely determine what is true
at that point. What random occurrences or exogenous
events occurred al so determineswhat istrue. We have
achoice: we can keep the semantic conception of asit-
uation (as a state) and makethe syntactic characteriza-
tion more complicated by perhapsinterleaving exoge-
nous actions, or we can keep the simple syntactic form
of thesituation cal culus, and use adifferent notion that
prescribestruth values. We have chosen the | atter, and
distinguish the ‘ situation’ denoted by the trajectory of
actions, from the ‘state’ that specifies what is true in
thesituation. In general therewill be aprobability dis-
tribution over states resulting from a set of actions by
the agent. It is this distribution over states, and their
corresponding utility, that we seek to model.

This division means that agent’s actions are treated
very differently from exogenous actions that can also
change what is true. The situation terms define only
the agent’s actions in reaching that point in time. The
situation calculus termsindicate only the trgjectory, in
termsof steps, of the agent and essentially just serveto
delimit time points at which we want to be able to say
what holds.

¢ When building conditional plans, we haveto consider
what we can condition these planson. We assume that
the agent has passive sensors, and that it can condition
itsactionson the output of these sensors. Weonly have
one sort of action, and these actions only affect ‘the
world’ (whichincludesboth the robot and the environ-
ment). All we need to do is to specify how the agent’s
sensors depend on the world. This does not mean that
we cannot model information-producing actions (e.g.,
looking in aparticular place) — theseinformation pro-
ducing actions produce effects that make the sensor
values correlate with what is true in the world. The
sensors can be noisy — the value they return does not
necessarily correspond with what istrue in the world
(of courseif there was no correlation with what istrue
in the world, they would not be very useful sensors).

door w

rio1 rill r123

Figure 1: The example robot environment

¢ When mixing logic and probability, one can extend a
rich logic with probability, and have two sorts of un-
certainty — that uncertainty from the probabilitiesand
that from digunctionin the logic [Bacchus, 1990]. An
alternative that is pursued in the independent choice
logicisto have all of the uncertainty in terms of prob-
abilities. Thelogic isrestricted so that thereis no un-
certainty in the logic — every set of sentences has a
unique model. In particular we choose the logic of
acycliclogic programs under the stable model seman-
tics; this seems to be the strongest practical language
with the unique model property. All uncertainty is
handled by what can be seen as independent stochas-
tic mechanisms, and adeterministic logic program that
gives the consequences of the agent’s actions and the
random outcomes. In thismanner we can get asimple
mix of logic and Bayesian decision theory (see[Poole,
1995h)).

¢ Unlikein Markov decision processes, wherethereisa
reward for each state and utilities accumulate, we as-
sumethat an agent carries out a plan, and receives util-
ity depending onthe stateit endsupin. Thisisdoneto
simplify the formalism, and seems natural. This does
not mean that we cannot model cases where an agent
receives rewards and costs along the way, but the re-
wards accumulated then have to be part of the state.
Note that MDPs a so need to make the cumulative re-
ward part of the state to model non-additive rewards
such asan agent receiving or paying interest onitscur-
rent utility. This also means that we cannot optimize
ongoing processesthat never halt — in fact the acyclic
restriction in the language means that we cannot model
such ongoing processes without inventing an arbitrary
stopping criteria (e.g., stop after 3 years).

We use the following ongoing example to show the power
of the formalism; it is not intended to be redlistic.

Example 1.1 Suppose we have a robot that can travel
around an office building, pick up keys, unlock doors, and
sense whether the key is at thelocation it is currently at. In

the domain depicted in Figure 1, we assume we want to en-
ter the lab, and there is uncertainty about whether the door
islocked or not, and uncertainty about wherethekey is(and
moreover the probabilities are not independent). There are
also stairsthat the robot can fall down, but it can choose to
go around thelong way rather and avoid the stairs. The util-
ity of aplan dependsonwhether it getsinto thelab, whether
it falls down the stairs and the resources used.

2 The Situation Calculusand a Solution to
the Frame Problem

Before we introduce the probabilistic framework we
present the situation calculus[McCarthy and Hayes, 1969]
and asimple solution to the frame problem dueto Kowal ski
[Kowalski, 1979], Schubert [Schubert, 1990] and Reiter
[Reiter, 1991].

The general ideais that robot actions take the world from
one ‘situation’ to another situation. We assume there is
a situation sq that is the initia situation, and a function
do(A, S)* that given action A and asituation S returnsthe
resulting situation.

Example2.1 do(goto(room111), sq) isasituation result-
ing from the agent attempting to go to room 111 from situ-
ation sq. do(pickup(key), do(goto(room111),sq)) isthe
situation resulting from the agent attempting to pick up a
key after it has attempted to go to room 111.

For this paper a situation is defined in terms of the s con-
stant and the do function. An agent that knows what it has
done, knowswhat situationitisin. It however does not nec-
essarily know what istrue in that situation. The robot may
be uncertain about what istrue in the initial situation, what
the effects of itsactions are and what exogenous events oc-
curred.

We model all randomness as independent stochastic mech-
anisms, such that an external viewer that knew the initial
state(i.e., what istruein thesituation s), and knew how the
stochastic mechanisms resolved themselves would be able
to predict what wastrue in any situation. Given a probabil-
ity distribution over the stochastic mechanisms, we have a
probability distribution over the effects of actions.

We will use logic to specify the transitions specified by ac-
tions and thus what is true in a situation. What is true in
a situation depends on the action attempted, what was true
before and what stochastic mechanism occurred. A fluent
isapredicate (or function) whose value depends on the sit-
uation; we will use the situation as the last argument to the
predicate (function). We assumethat for each fluent we can
axiomatise in what situationsiit is true based on the action
that was performed, what wastrue in the previous state and
the outcome of the stochastic mechanism.

!We assume the Prolog convention that variables are in upper
case and constants are in lower case. Free variablesin formulae
are considered to be universally quantified with the widest scope.

Example 2.2 We can write rules such as, the robot is car-
rying the key after it has (successfully) picked it up:

carrying(key, do(pickup(key), S)) +
at(robot, Pos,S) A
at(key, Pos, S) A
pickup_succeeds(S).

Here pickup_succeeds(S) is true if the agent would suc-
ceedif it picksup the key and isfalseif the agent would fail
to pick up the key. The agent typically does not know the
valueof pickup_succeeds(S) insituation .S, or theposition
of the key.

The general form of a frame axiom specifies that a fluent
istrue after asituation if it were true before, and the action
were not one that undid the fluent, and there was no mech-
anism that undid the fluent.

Example 2.3 The agent is carrying the key as long as the
action was not to put down the key or pick up the key, and
the agent did not accidentally drop the key while carrying
out another action?:

carrying(key, do(A, S)) +
carrying(key, S) A
A # putdown(key) A
A # pickup(key) A
keeps_carrying(key, S).

Like pickup_succeeds(S) in Example 2.2,
keeps_carrying(key,S) may be something that the
agent does not know whether it is true — there may be a
probability that the agent will drop thekey. Thisthusforms
a stochastic frame axiom. Note that the same mechanism
that selects between dropping the key and keeping on
carrying the key may also have other effects.

We assume that the clauses are acyclic [Apt and Bezem,
1991]. Recursionisallowed but all recursion much be well
founded. The clauses represent the compl ete description of
when the predicate will hold.

3 Thelndependent ChoiceLogic

TheIndependent Choice L ogic specifiesaway to build pos-
sible worlds. Possible worlds are built by choosing propo-
sitions from independent alternatives, and then extending
these ‘total choices’ with alogic program. This section de-
finesthelogicICLgc.

2Notethat A # pickup(key) isacondition here to cover the
case where the robot is holding the key and attempts to pick it up.
With the inequality the robot has the same chance of succeeding
as a pickup action when the agent is not holding the key. Without
this condition, the agent would not be holding the key only if it
dropped the key and the pickup failed.

Note that a possibleworld correspond to acomplete history.
A possible world will specify what istrue in each situation.
In other words, given a possible world and a situation, we
can determine what istrue in that situation. We define the
independent choice logic without reference to situations—
the logic programswill refer to situations.

There are two languages we will use: £r which, for this
paper, is the language of acyclic logic programs [Apt and
Bezem, 1991], and the language £, of queries which we
take to be arbitrary propositional formulae (the atoms cor-
responding to ground atomic formulae of thelanguage £ r).
Wewrite f |~ g where f € Lrp and g € Lg if g istruein
the unique stable model of f or, equivalently, if ¢ follows
from Clark’s completion of ¢ (the uniqueness of the stable
model and the equivalencefor acyclic programsare proved
in [Apt and Bezem, 1991]). See [Poole, 1995a] for a de-
tailed analysis of negation asfailurein thisframework, and
for an abductive characterisation of the logic.

Definition 3.1 A choice space is a set of sets of ground
atomic formulae, such that if C', and C5 are in the choice
space, and Cy # Cy then Cy N Cy = {}. An element of
achoice spaceiscalled achoice alter native (or sometimes
just an alternative). An element of a choice aternative is
called an atomic choice. An atomic choice can appear in at
most one alternative.

Definition 3.2 An ICLgc
(Co, A, O, Py, F) where

theory is a tuple

Cy called nature's choice space, is the choice space of al-
ternatives controlled by nature.

A calledtheaction space, isa set of primitive actions that
the agent can perform.

@ theobservablesisaset of terms.

P, is afunction UC; — [0,1] such that YC' € Cq,
Y ccc Pole) = 1.1.e, P is aprobability measure
over the alternatives controlled by nature.

F called the facts, is an acyclic logic program [Apt and
Bezem, 1991] such that no atomic choice (in an ele-
ment of Cy) unifieswith the head of any rule.

The independent choice logic specifies a particular seman-
tic construction. The semanticsis defined in terms of pos-
sible worlds. There is a possible world for each selection
of one element from each alternative. What follows from
these atoms together with F are true in this possible world.

SAlternatives correspond to ‘variables in decision theory.
This terminology is not used here in order to not confuse logical
variables (that are allowed as part of the logic program), and ran-
dom variables. Anatomic choice correspondsto an assignment of
avalueto avariable; theabove definition just treats avariabl e hav-
ing a particular value as a proposition (not imposing any particu-
lar syntax); the syntactic restrictionsand the semantic construction
ensurethat thevaluesof avariablearemutually exclusive and cov-
ering, aswell asthat the variablesare unconditionally independent
(see[Poole, 1993])

Definition 3.3 If S isaset of sets, a selector function on
Sisamapping r : § — US such that 7(S) € S for al
S € 8. Therange of selector function 7, written R (7) is
theset {7(S) : S € S}.

Definition 3.4 Given ICLgc theory (Co, A, O, Py, F), for
each selector function on Cy thereisapossibleworld w; .
If fisaformulainlanguage £, and w, isapossibleworld,
wewritew, |= f (read f istruein possibleworld w;) if
FUR(T) .

Theexistence and uniqueness of themodel followsfromthe
acyclicity of the logic program [Apt and Bezem, 1991].

3.1 Axiomatising utility

Given the definition of an I1CLg¢ theory, we can writerules
for utility. We assume that the utility depends on the situa-
tion that the robot ends up in and the possible world. In par-
ticular we allow for rulesthat imply utility(U, S), whichis
true in apossible world if the utility is U/ for situation S in
that world. The utility depends on what is true in the state
defined by the situation and theworld — thuswewriterules
that imply wutility. Thisallowsfor astructured representa-
tion for utility. In order to make sure that we can interpret
these rules as utilities we need to have utility being func-
tional: for each S there existsaunique U for each world:

Definition 3.5 An ICLgc theory is utility complete if for
each possible world w,, and each situation S there is a
unique number U such that w, = utility(U, S).

Ensuring utility completeness can be done locally; we have
to make sure that the rules for utility cover all of the cases
and there are not two rules that imply different utilities
whose bodies are compatible.

Example 3.6 Suppose the utility is the sum of the ‘prize
plus the remaining resources:

utility(R+ P, S) +
prize(P,S) A

resources(R, S).

The prize depends on whether the robot reached its destina-
tionor it crashed. No matter what the definition of any other
predicates is, the following definition of prize will ensure
thereis a unique prize for each world and situation®:

prize(—1000, S) « crashed(S).
prize(1000, S) « in_lab(S) A ~crashed(S).
prize(0,S) « ~in_lab(S) A ~crashed(S).

Theresourcesused dependsnot only onthefinal state but on
theroute taken. To model thiswe makeresources afluent,

“Weuse‘~' to mean negation under Clark completion [Clark,
1978], or in the stable model semantics [Gelfond and Lifschitz,
1988] — these and other semantics for so-called negation as fail-
ure coincide for acyclic theories [Apt and Bezem, 1991].

and like any other fluent we axiomatiseit:

resources(200, sq).

resources(R — Cost,do(goto(To, Route), S)) +
at(robot, From, S) A
path(From,To, Route, Risky, Cost) A
resources(R, S).

resources(R, do(goto(To, Route), S)) +
erashed(S) A
resources(R, S).

resources(R — 10,do(A, S)) +
~gotoaction(A) A
resources(R, S).

gotoaction(goto(A, S)).

Here we have assumed that non-goto actions cost 10, and
that paths have costs. Paths and their risks and costs are
axiomatised using path(From, To, Route, Risky, Cost)
that istrueif the path from F'rom to To via Route hasrisk
given by Risky can cost C'ost. An example of this for our
domainis:

path(r101, 7111, direct, yes, 10).
path(r101,7111,long, no, 100).
path(r101,r123, direct, yes, 50).
path(r101,7123,long, no,90).
path(r101, door, direct, yes, 50).
path(r101, door,long, no, 70).

3.2 Axiomatising Sensors

We al'so need to axiomatise how sensorswork. We assume
that sensors are passive; this means that they receive infor-
mation from the environment, rather than * doing’ anything;
there are no sensing ‘actions’. This seems to be a better
model of actual sensors, such as eyes or ears, and makes
modelling simpler than when sensingisan action. So called
‘information producing actions' (such as opening the eyes,
or performing a biopsy on a patient, or exploding a parcel
to seeif it is (was) a bomb) are normal actions that are de-
signed to change the world so that the sensorswill correlate
with the value of interest. Note that under this view, there
areno information producing actions, or even informational
effects of actions; rather various conditions in the world,
some of which are under the robot’s control and some of
which are not, work together to give varying values for the
output of sensors.

Note that arobot cannot condition its action on what istrue
in the world; it can only condition its actions on what it
senses and what it remembers. The only use for sensorsis
that the output of a sensor depends, perhaps stochastically,
on what is true in the world, and thus can be used as evi-
dencefor what istruein the world.

Within our situation cal culus framework, can write axioms

to specify how sensed values depend on what is true in
the world. What is sensed depends on the situation and
the possible world. We assume that there is a predicate
sense(C, S) that istrueif C issensed in situation S. Here
C isaterm in our language, that represents one value for
the output of asensor. ' issaid to be observable.

Example 3.7 A sensor may beto be ableto detect whether
therobot isat the same position asthekey. Itisnot reliable;
sometimes it says the robot is at the same position as the
key when it is not (a false positive), and sometimesit says
that the robot is not at the same position when it is (afalse
negative). The output of the sensor is correlated with what
istruein the world, and can be conditioned on in plans.

Supposethat noisy sensor at_key detectswhether the agent
is at the same position as the key. For a situation s,
sense(at_key, s) istrue (inaworld) if the robot senses that
itisat thekey in situation s — the *at key’ sensor returns a
positive value— and is fal se when the robot does not sense
it is at the key — the sensor returns a negative value. The
sense(at_key, S) relation can be axiomatised as:

sense(at_key, S) «
at(robot, P, S) A
at(key, P, S) A
sensor_true_pos(S).

sense(at_key, S) «
at(robot, P1, S) A
at(key, P2, S) A
P # Py A

sensor_false_pos(S).

The fluent sensor_false_pos(S) is true if the sen-
sor is giving a false-positive value in situation S, and
sensor_true_pos(S) is true if the sensor is not giving a
false negativein situation S. Each of these could be part of
an atomic choice, which would let us model sensors whose
errors at different times are independent. The language
also lets us write rules for this fluent so that we can model
how sensors break.

4 GOLOG and Conditional Plans

Theidea behind the decision-theoretic planning framework
proposed inthis paper isthat agentsget to choose situations
(they get to choose what they do, and when they stop), and
‘nature’ getsto choose worlds (thereis a probability distri-
bution over the worlds that specifies the distribution of ef-
fects of the actions).

Agents get to choose situations, but they do not have to
choose situations blind. We assume that agents can sense
theworld, and choosetheir actions conditional on what they
observe. Moreover agents can have sequencesof acting and
observing.

Agents do not directly adopt situations, they adopt ‘plans

or ‘programs. In genera these programs can involve
atomic actions, conditioning on observations, loops, nonde-
terministic choice and procedural abstraction. The GOLOG
project [Levesque et al., 1996] is investigating such pro-
grams. In this paper we only consider simple conditional
plans which are programs consisting only of sequential
composition and conditioning on observations. One contri-
bution of this paper isto show how conditioning future ac-
tions on observations can be cleanly added to GOLOG (in
asimilar manner to the independently devel oped robot pro-
grams of [Levesque, 1996]).

Anexampleplanis:
a;if cthenb else d; e endIf; ¢

An agent executing this plan will start in situation sq, then
do action a, then it will sense whether ¢ is true in the re-
sulting situation. If ¢ is true, it will do b then ¢, and if ¢
is false it will do d then e then g. Thus this plan either
selects the situation do(g, do(b, do(a, sg))) or the situation
do(yg,do(e, do(d, do(a, sq)))). It selects the former in all
worldswheresense(c, do(a, sq)) istrue, and selectsthelat-
ter in all worlds where sense(c, do(a, so)) is fase. Note
that each world is definitive on each fluent for each situa-
tion. The expected utility of this plan is the weighted av-
erage of the utility for each of the worlds and the situation
chosen for that world. The only property we need of ¢ isthat
its value in situation do(a, sq) will be able to be observed.
The agent does not need to be able to determine its value
beforehand.

Definition 4.1 A conditional plan, or just aplan, isof the
form

skip
A where A isaprimitive action
P;@Q where P and () are plans
if C then P else @ endIf
where C' isobservable; P and are plans

Note that ‘skip’ isnot an action; the skip plan means that
the agent does not do anything— timedoesnot pass. Thisis
introduced so that the agent can stop without doing anything
(thismay be areasonableplan), and sowedo not need an* if
C'then P endIf” formaswell; thiswould be an abbreviation
for “if C then P else skip endIf”.

Plans select situations in worlds. We define arelation
trans(P, W, Sy, 52)

that is true if doing plan P in world 1 from situation .Sy
resultsin situation S,. Thisis similar to the DO macro in
[Levesque et al., 1996] and the Rdo of [Levesque, 1996],
but here what the agent does depends on what it observes,
and what the agent observesdepends on whichworldit hap-
pensto bein.

We can definethe trans relation in pseudo Prolog as:

trans(skip, W, S, S).

trans(A, W, S,do(A, S)) +
primitive(A).
trans((P;Q), W, S1, Ss) +
trans(P, W, Sy, Sa2) A
trans(Q, W, Sa, Ss).
trans((if C then P else @ endIf), W, Sy, .53) «
W = sense(C, S1) A
trans(P, W, Sy, Sa).
trans((if C then P else @ endIf), W, Sy, .53) «
W £ sense(C, S1) A
trans(Q, W, Sy, Sa).

Now we are at the stage where we can define the expected
utility of a plan. The expected utility of a plan is the
weighted average, over the set of possible worlds, of the
utility the agent receives in the situation it ends up in for
that possible world:

Definition 4.2 If icLgc theory (Co, A, O, Py, F) is utility
complete, the expected utility of plan P is’:

e(P) =Y plws) x u(w,, P)

(summing over all selector functions ~ on Cy) where

u(W,P)=U if W = utility(U, S)
wheretrans(P, W, sg, S)

(thisiswell defined as the theory is utility complete), and

p(ws) = H Py(Co)

Co€R(T)

u(W, P) is the utility of plan P in world W. p(w.) isthe
probability of world w,. The probability is the product of
the independent choices of nature. It is easy to show that
thisinduces a probability measure (the sum of the probabil-
ities of theworldsis 1).

5 Detailsof our Example

We can model dependent uncertainties. Supposewe are un-
certain about whether the door islocked, and where the key
is, and suppose that these are not independent, with the fol-
lowing probabilities:

P(locked(door, sg)) = 0.9
P(at(key, r101, sg)|locked(door, sg)) = 0.7
P(at(key, r101, sg)|unlocked(door, sg)) = 0.2

(from which we conclude P (at_key(r101, so)) = 0.65.)

SWe need a dlightly more complicated construction when we
have infinitely many worlds. We need to define probability over
measurable subsets of the worlds [Poole, 1993], but that would
only complicate this presentation.

Following the methodology outlined in [Poole, 1993] this
can be modelled as:

random([locked(door, sq) : 0.9,
unlocked(door, sq) : 0.1]).
random([at_key_lo(r101,sq) : 0.7,
at_key_lo(key, r123) : 0.3]).
random([at_key_unlo(r101, sg) : 0.2,

at_key_unlo(key,r123) : 0.8]).
at(key, R, sg) +
at_key_lo(R, sg) A
locked(door, sq).
at(key, R, sg) +
at_key_unlo(R, sq) A

unlocked(door, sg).

where random([ar : p1,...,an : pn]) Means
{a1,...,a,} € Co and Py(a;) = p;. Thisisthe syntax
used by our implementation.

We can model complex stochastic actions using the same
mechanism. The action goto is risky; whenever the robot
goes past the stairs there is a 10% chance that it will fall
down the stairs.

Thisis modelled with the choice alternatives:

random([would_fall_down_stairs(S) : 0.1,
would_not_fall_down_stairs(S) : 0.9]).

which means

VS {would_fall_down_stairs(S),
would_not_fall_down_stairs(S)} € Cy
V.S Py(would_fall_down_stairs(S)) = 0.1

These atomic choices are used in the bodies of rules. We
can define the propositional fluent ‘at’:

at(robot, T'o,do(goto(To, Route), S)) +
at(robot, From, S) A
path(From,To, Route,no, Cost).

at(robot, T'o, do(goto(To, Route), S)) +
at(robot, From, S) A
path(From,To, Route, yes, Cost) A
would_not_fall_down_stairs(S).

at(robot, Pos,do(A, S)) +
~gotoaction(A) A
at(robot, Pos, S).

at(X,P,S) «

X # robot A
carrying(robot, X, S) A
at(robot, P, S).

at(X, Pos,do(A, S)) «
X # robot A
~carrying(robot, X, S) A
at(X, Pos, S).

In those worlds where the path is risky and the agent would
fall down the stairs, then it crashes:

crashed(do(A, S)) +
crashed(S).
crashed(do(A, S)) +
risky(A, S) A
would_fall_down_stairs(S).
risky(goto(To, Route), S) +
path(From,To, Route, yes,) A
at(robot, From, S).

Anexampleplanis:

goto(r101, direct);

if at_key
then
pickup(key);
goto(door,long)
else
goto(r123, direct);
pickup(key);
goto(door, direct)
endIf;
unlock _door;
enter_lab

Given the situation calculus axioms (not all were pre-
sented), and the choice space, this plan has an expected
utility. Thisis obtained by deriving utility(U, S) for each
world that is selected by the plan, and using aweighted av-
erage over the utilities derived. The possible worlds corre-
spond to choices of elements from alternatives. We do not
need to generate the possible worlds — only the ‘ explana-
tions' of the utility [Poole, 1995al. For example, in all of
the worlds where the following is true,

{locked(door, sq), at(key, 7101, sq),
would_not_fall_down_stairs(sg),
sensor_true_pos(do(goto(r101, direct), sg)),
pickup_succeeds(do(goto(r101, direct), sg))}

the sensing succeeds (and so the ‘then’ part of the condi-
tion is chosen), the prize is 1000, and the resources | eft are
theinitial 200, minusthe 10 going from 111 to »101, mi-
nus the 70 going to the door, minus the 30 for the other
three actions. Thus the resulting utility if 1090. The sum
of the probabilitiesfor all of these worldsis the product of
the probabilities of the choices made.

Similarly all of the the possible worlds with
would_fall_down_stairs(sg) true have prize —1000,

and resources 190, and thus have utility —810. The
probability of all of these worlds sumsto 0.1.

The expected utility of this plan can be computed by enu-
merating the other cases.

6 Richer Plan Language

There are two notable deficiencies in our definition of a
plan; these were omitted in order to make the presentation
simpler.

1. Our programs do not contain loops.

2. Therearenolocal variables; al of theinternal state of
the robot is encoded in the program counter.

Oneway to extend thelanguagetoincludeiterationin plans,
is by adding a construction such as

while C' do P endDo

asaplan (where C' isobservable and P isaplan), with the
corresponding definition of trans being®:

trans((while C' do P endDo), W, Sy, S1)
W £ sense(C, Sy).

trans((while C do P endDo), W, Sy, Ss) +
W = sense(C, S1) A
trans(P, W, Sy, S2) A
trans((while C' do P endDo), W, Sa, Ss).

Thiswould allow for interesting programs including loops
such as

while everything_ok do wait endDo

(where wait has no effects) which is very silly for deter-
ministic programs, but isperfectly sensiblein stochastic do-
mains, where the agent loops until an exogenous event oc-
cursthat stops everything being OK. Thisis not part of the
current theory as it violates utility completeness, however,
for many domains, the worlds where this program does not
halt have measure zero — aslong as the probability of fail-
ure > 0, given enough time something will always break

Local variables can easily be added to the definition of a
plan. For example, we can add an assignment statement to
assignlocal variablesvalues, and allow for branching onthe
valuesof variablesaswell asobservations. This(and allow-
ing for arithmetic valuesand operators) will expand therep-
resentational power of the language (see [L evesgue, 1996]
for adiscussion of thisissue).

5Note that we really need a second-order definition, as in
[Levesque, 1996], to properly definethe trans relation rather than
the recursive definition here. This will let us characterize loop
termination.

The addition of local variables will make some programs
simpler, such asthose programswherethe agent isto condi-
tion on previous values for a sensor. For example, suppose
therobot’ ssensor can tell whether adoor isunlocked along
time before it is needed. With local variables, whether the
door is unlocked can be remembered. Without local vari-
ables, that information needs to be encoded in the program
counter; this can be done by branching on the sense value
when it is sensed, and having different branches depending
on whether the door was open or not.

7 Comparison with Other Representations

One of the popular action representations for stochastic ac-
tions is probabilistic STRIPS [Kushmerick et al., 1995;
Draper et al., 1994; Boutilier and Dearden, 1994; Had-
dawy et al., 1995]. In this section we show that the pro-
posed representation is more concise in the sense that the
ICLgcrepresentation will not be (more than a constant fac-
tor) larger than then corresponding probabilistic STRIPS
representation plus arule for each predicate, but that some-
times probabilistic STRIPS representation will be exponen-
tially larger than the corresponding 1CL g¢ representation.

It is easy to trandlate probabilistic STRIPSinto ICLsc: Us-
ing the notation of [Kushmerick et al., 1995], each action a
isrepresented asaset {(¢;, pi, e;) }. Eachtuplecan betrans-
lated into the rule of form:

bi(a, S) « t;[S] Ari[S]

(f[.S] meansthe stateterm isadded to every atomic formula
in formula f), where b; is a unique predicate symbol, the
different r; for the same trigger are collected into an alter-
native set, such that Py(r;(S)) = p; for al S. For those
positive elements p of ¢;, we havearule:

pldo(a, S)] < b;i(a,S)

For those negative elementsp of e; we havetherule,
undoes(p, a, S) < b;(a, S)

and the frame rule for each predicate:
pldo(A, S)] « p(S) A ~undoes(p, A, S).

ThecLgc action representation is much more modular for
some problems than probabilistic STRIPS. Asin STRIPS,
the actions have to be represented all at once. Probabilistic
STRIPS is worse than the ICLg¢ representation when ac-
tions effect fluents independently. At one extreme (where
the effect does not depend on the action), consider stochas-
tic ‘frame axioms' such as the axiom for carrying pre-
sented in Example 2.3. In probabilistic STRIPS the condi-
tional effects have to be added to every tuple representing
an action — in terms of [Kushmerick et al., 1995], for ev-
ery trigger that iscompatible with carrying thekey, we have
to split into the cases where the agent drops the key and the

agent doesn’t. Thus the probabilistic STRIPS representa-
tion grows exponentially with the number of independent
stochastic frame axioms: consider n fluents which persist
stochastically and independently and the wait action, with
no effects. TheCLgc representationislinear in the number
of fluents, whereas the probabilistic STRIPS representation
isexponentia inn. Notethat if the persistence of thefluents
arenot independent, thenthe ICL g¢ representation will al'so
be the exponential in n — we cannot get better than this;
the number of probabilitiesthat have to be specifiedis also
exponential in n. In some sense we are exploiting the con-
ciseness of Bayesian networks — together with structured
probability tables (see [Poole, 1993]) — to specify the de-
pendencies amongst the outcomes.

TheicLgc representationisclosely related totwo slicetem-
poral Bayesian networks [Dean and Kanazawa, 1989] or
the action networks of [Boutilier et al., 1995; Boutilier and
Poole, 1996] that are used for Markov decision processes
(MDPs). The latter represent in trees what is represented
here in rules — see [Poole, 1993] for a comparison be-
tween the rule language presented here and Bayesian net-
works. The situation calculus rules can be seen as struc-
tured representations of the state transition function, and the
rules for utility can be seen as a structured representation
of the reward or value function. In [Boutilier and Poole,
1996, thisstructureisexploitedfor finding optimal policies
in partially observable MDPs. A problem withthe POMDP
conception is that it assumes that agents maintain a belief
state (a probability distribution over possible worlds). In
order to avoid this, POMDP researchers (see [Kaelbling et
al., 1996]) have proposed ‘ policy trees’, which correspond
to the plans developed here. The general idea behind the
structured POMDP algorithm [Boutilier and Poole, 1996]
is to use what is essentially regression [Waldinger, 1977]
on the situation calculus rules to build plans of future ac-
tions contingent on observations — policy trees. The dif-
ficult part for exact computation is to not build plans that
are stochastically dominated [Kaglbling et al., 1996]. One
problem with the action networksis that the problem repre-
sentations grow with the product of the number of actions
and the number of state variables— thisisexactly theframe
problem [McCarthy and Hayes, 1969] that is ‘ solved’ here
using Reiter’s solution [Reiter, 1991]; if the number of ac-
tionsthat affect afluent isbounded, the size of the represen-
tationisproportional the number of fluents (state variables).

In contrast to [Haddawy and Hanks, 1993], we alow a
general language to specify utility. Utility can be an arbi-
trary function of thefinal state, and because any information
about the past can be incorporated into the state, we allow
the utility to be an arbitrary function of the history. Theaim
of this work is not to identify useful utility functions, but
rather to give alanguage to specify utilities.

The use of probability in this paper should be contrasted
to that in [Bacchus et al., 1995]. The agents in the frame-
work presented here do not (have to) do probabilistic rea-
soning. As, for example in MDPs, the probabilistic rea-
soning is about the agent and the environment. An optimal

agent (or an optimal program for an agent) may maintain
a belief state that is updated by Bayes rule or some other
mechanism, but it does not have to. It only has to do the
right thing. Moreover we let the agent condition its actions
based on its observations, and not just updateits belief state.
We can also incorporate non-deterministic actions.

8 Conclusion

This paper has presented a formalism that lets us combine
situation calculus axioms, conditional plans and Bayesian
decision theory in a coherent framework. It is closely re-
lated to structured representations of POMDP problems.
The hope isthat we can form a bridge between work in Al
planning and in POM DPs, and use the best features of both.
Thisisthe basis for ongoing research.

Theway we havetreated the situation cal culus (and we have
tried hard to keep it as close to the original as possible) re-
ally givesan agent-oriented view of time— the* situations
in some sense mark particular time points that correspond
to the agent completing its actions. Everything else (e.g.,
actions by nature or other agents) then has to meld in with
this division of time. Whether thisis preferable to a more
uniform treatment of the agent’s actions and other actions
(seee.g., [Poole, 1995h]) is still amatter of argument.

References

[Apt and Bezem, 1991] K. R. Apt and M. Bezem. Acyclic
programs. New Gener ation Computing, 9(3-4):335-363,
1991.

[Bacchuset al., 1995] F. Bacchus, J. Y. Halpern, and H. J.
L evesgue. Reasoning about noisy sensorsinthesituation
calculus. In Proc. 14th International Joint Conf. on Ar-
tificial Intelligence, pages 1933-1940, Montreal, 1995.

[Bacchus, 1990] F. Bacchus. Representing and Reason-
ing with Uncertain Knowledge. MIT Press, Cambridge,
M assachusetts, 1990.

[Boutilier and Dearden, 1994] R. Boutilier and R. Dear-
den. Using abstractions for decision-theoretic planning
with time constraints. In Proc. 12th National Confer-
ence on Artificial Intelligence, pages 1016-1022, Seat-
tle, WA, 1994.

[Boutilier and Poole, 1996] C. Boutilier and D. Poole.
Computing optimal policies for partially observable de-
CiSion processes using compact representations. 1n Proc.
13th National Conference on Artificial Intelligence, to
appear, Portland, OR, 1996.

[Boutilier and Puterman, 1995] C. Boutilierand M. L. Put-
erman. Process-oriented planning and average-reward
optimality. In Proc. 14th International Joint Conf. on
Artificial Intelligence, pages 1096-1103, Montréal, Que-
bec, August 1995.

[Boutilier et al., 1995] C. Boutilier, R. Dearden, and
M. Goldszmidt. Exploiting structure in policy construc-

tion. In Proc. 14th International Joint Conf. on Artificial
Intelligence, page 1104-1111, Montreal, Quebec, 1995.

[Clark, 1978] K. L. Clark. Negation asfailure. InH. Gal-
laireand J. Minker, editors, Logic and Databases, pages
293-322. Plenum Press, New York, 1978.

[Dean and Kanazawa, 1989] T. Dean and K. Kanazawa. A
model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142-150, 1989.

[Deanetal., 1993] T. Dean, L. P Kaglbling, J. Kirman,
and A. Nicholson. Planning with deadlinesin stochastic
domains. In Proc. 11th National Conferenceon Artificial
Intelligence, pages 574-579, Washington, D.C., 1993.

[Draper et al., 1994] D. Draper, S. Hanks, and D. Weld.
Probabilistic planning with information gathering and
contingent execution. In Proceedings of the Second In-
ternational Conference on Al Planning Systems, pages
31-36, Menlo Park, CA, 1994.

[Feldman and Sproull, 1975] J. R. Feldman and R. F.
Sproull. Decision theory and artificial intelligence I1:
The hungry monkey. Cognitive Science, 1:158-192,
1975.

[Gelfond and Lifschitz, 1988] M. Gelfond and V Lif-
schitz. The stable model semantics for logic pro-
gramming. In R. Kowalski and K. Bowen, editors,
Proceedings of the Fifth Logic Programming Sympo-
sium, pages 1070-1080, Cambridge, Mass., 1988.

[Haddawy and Hanks, 1993] P. Haddawy and S. Hanks.
Utility models for goal-directed decision-theoretic plan-
ners. Technical Report 93-06-04, University of Wash-
ington, Department of Computer Science and Engineer-
ing, ftp://ftp.cs.washington.edu/pub/ai/haddawy-hanks-
aij-submission.ps.Z, September 1993.

[Haddawy et al., 1995] P Haddawy, A. Doan, and
R. Goodwin. Efficient decision-theoretic planning:
Techniques and empirical analysis. In P. Besnard and
S. Hanks, editors, Proc. Eleventh Conf. on Uncertainty
in Artificial Intelligence, pages 229-236, Montreal,
1995.

[Kaelbling et al., 1996] L. Pack Kaelbling, M. L. Littman,
and A. R. Cassandra. Planning and acting in par-
tially observable stochastic domains. Technical
report CS-96-08, Department of Computer Science,
Brown University, 1996, http://www.cs.brown.edu/
publications/techreports/reports/ CS-96-08.html

[Kowalski, 1979] R.Kowalski. Logicfor Problem Solving.
Artificial Intelligence Series. North Holland, New York,
1979.

[Kushmerick et al., 1995] N. Kushmerick, S. Hanks, and
D. S. Weld. An algorithm for probabilistic planning. Ar-
tificial Intelligence, 76:239-286, 1995. Special issue on
planning and scheduling.

[Levesqueet al.,1996] H. J. Levesque, R. Raeiter,
Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG:
A logic programming language for dynamic domains.

Journal of Logic Programming, Special issue on
Reasoning about Action and Change, submitted, 1996.

[Levesque, 1996] H. J. Levesque. What is planning in the
presence of sensing? In Proc. 13th National Confer-
ence on Artificial Intelligence, to appear, Portland, Ore-
gan, 1996.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes.
Some philosophical problems from the standpoint of ar-
tificial intelligence. In M. Meltzer and D. Michie, edi-
tors, Machine Intelligence 4, pages 463-502. Edinburgh
University Press, 1969.

[Poole, 1993] D. Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64(1):81—
129, 1993.

[Poole, 1995a] D. Poole. Abducing through negation as
failure: Stable models within the independent choice
logic. Technical Report, Department of Computer
Science, UBC, ftp://ftp.cs.ubc.calftp/l ocal/poole/papers/
abnaf.ps.gz, January 1995.

[Poole, 1995b] D. Poole. Game theory, agent models and
the independent choice logic. Technical Report, Depart-
ment of Computer Science, UBC, ftp://ftp.cs.ubc.calftp/
local/pool e/paperd/icl.ps.gz, 1995.

[Poole, 1995¢] D. Poole. Logic programming for robot
control. In Proc. 14th International Joint Conf. on Artifi-
cial Intelligence, pages 150-157, ftp://ftp.cs.ubc.cal/ftp/
local/pool e/paperd/Iprc.ps.gz, 1995.

[Puterman, 1990] M. L. Puterman. Markov decision pro-
cesses. InD. P. Heyman and M. J. Sobel, editor, Hand-
books in OR and MS \ol. 2, chapter 8, pages 331-434.
Elsevier Science Publishers B. V., 1990.

[Reiter, 1991] R. Reiter. The frame problem in the situa-
tion calculus: A simple solution (sometimes) and acom-
pleteness result for goal regression. In V. Lifschitz, edi-
tor, Artificial Intelligence and the Mathematical Theory
of Computation: Papersin Honor of John McCarthy,
pages 359-380. Academic Press, San Diego, California,
1991.

[Schoppers, 1987] M. J. Schoppers. Universal plansfor re-
active robots in umpredicatable environments. In Proc.
10th International Joint Conf. on Artificial Intelligence,
pages 1039-1046, Milan, Italy, 1987.

[Schubert, 1990] L. K. Schubert. Monotonic solutions to
the frame problem in the situation calculus: An efficient
method for worlds with fully specified actions. In H. E.
Kyburg, R. P. Loui and G. N. Carlson, editor, Knowledge
Representation and Defeasible Reasoning, pages 23-67.
Kluwer Academic Press, Boston, Mass., 1990.

[Waldinger, 1977] R. Waldinger. Achieving several goals
simultaneously. In E. Elcock and D. Michie, editor,
Machine Intelligence 8: Machine Representations of
Knowledge, pages 94-136. Ellis Horwood, Chichester,
England, 1977.

