Montreal, Quebec, Canada, August 18-20, 1995

Acknowledgements

This work was supported by Institute for Robotics and In-
telligent Systems, Project 1C-7 and Natural Sciences and
Engineering Research Council of Canada Operating Grant
OGPO044121. Thanksto Craig Boutilier for valuable dis-
cussions and for comments on earlier versions of this pa
per.

References

[Apt and Bezem, 1991] K. R. Apt and M. Bezem. Acyclic
programs. New Gener ation Computing, 9(3-4):335-363,
1991.

[Ballard, 1983] B. W. Ballard. The s-minimax search pro-
cedure for trees containing chance nodes. Artificial In-
telligence, 21(3):327-350, 1983.

[Boutilier et al., 1995] C. Boutilier, R. Dearden, and
M. Goldszmidt. Exploiting structure in policy construc-
tion. In Proc. 14th International Joint Conf. on Artificial
Intelligence, to appear, Montreal, Quebec, 1995.

[Cassandraet al., 1994] A. R. Cassandra, L. Pack Kae-
bling, and M. L. Littman. Acting optimally in partially
observable stochastic domains. In Proc. 12th National
Conference on Artificial Intelligence, pages 1023-1028,
Sesttle, 1994.

[Cooper, 1988] G. F. Cooper. A method for using belief
netwoks as influence diagrams. In Proc. Fourth Confer-
ence on Uncertainty in Artificial Intelligence, pages 55—
63, Minnesota, Minneapolis, 1988.

[Howard and Matheson, 1981] R. A. Howard and J. E.
Matheson. Influence diagrams. In R. A. Howard and
J. Matheson, editors, The Principlesand Applications of
Decision Analysis, pages 720-762. Strategic Decisions
Group, CA, 1981.

[Monahan, 1982] G. E. Monahan. A survey of partialy
observable Markov decision processes: Theory, models
and algorithms. Management Science, 28:1-16, 1982.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelli-
gent Systems. Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[Poole, 1993a] D. Poole. Logic programming, abduction
and probability: A top-down anytimealgorithm for com-
puting prior and posterior probabilities. New Generation
Computing, 11(3-4):377-400, 1993.

[Poole, 1993b] D. Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64(1):81—
129, 1993.

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

[Poole, 1995a] D. Poole. Abducing through negation as
failure: Stable models within the independent choice
logic. Technical Report, Department of Computer
Science, UBC, ftp://ftp.cs.ubc.calftp/local/pool e/papers/
abnaf.ps.gz, January 1995.

[Poole, 1995b] D. Poole. Sensing and acting in the
independent choice logic. In Working Notes AAAI
Soring Symposium 1995 — Extending Theories of Ac-
tions: Formal Theory and Practical Applications, ftp://
ftp.cs.ubc.calftp/local/pool e/papers/actions.ps.gz, 1995.

[Qi and Poole, 1995] R. Qi and D. Poole. New method
for influence diagram evaluation. Computational Intel-
ligence, 11(3), 1995.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57-95, April
1987.

[Reiter, 1991] R. Reiter. The frame problem in the situa-
tioncalculus: A simplesolution (sometimes) and acom-
pletenessresult for goal regression. In V. Lifschitz, edi-
tor, Artificial Intelligence and the Mathematical Theory
of Computation: Papers in Honor of John McCarthy,
pages 359-380. Academic Press, San Diego, 1991.

[Shachter and Peot, 1992] R. Shachter and M. A. Peot. De-
cision maiking using probabilistic inference methods. In
Proc. Eighth Conf. on Uncertainty in Artificial Intelli-
gence, pages 276283, Stanford, CA, 1992,

[Shachter, 1986] R. D. Shachter. Evaluating influence dia-
grams. Operations Research, 34(6):871-882,
November-December 1986.

[Smith et al., 1993] J. E. Smith, S. Holtzman, and J. E.
Matheson. Structuring conditional relationshipsin in-
fluence diagrams. Oper ations Research, 41(2):280-297,
1993.

[Zhang et al., 1994] N. L. Zhang, R. Qi, and D. Poole.
A computational theory of decision networks. Inter-
national Journal of Approximate Reasoning, 11(2):83—
158, 1994.

Montreal, Quebec, Canada, August 18-20, 1995

procedur e expectation(S):

input: set of observation full pre-policies.

output: set of tuples of the form {d;, K, v}, such that when-
ever K isobserved, decision d; has (expected) utility v.

while3 (d;,0, K, u) € 5,{d;,0',K',u') € §
such that consistent(§ U 6') and 0 & 6’
selectw € 6 — 6’
let © be the element of O such that w € Q
replace (d;, 6, K’,u") in S by
the split of (d;,6’,K',u') onQ
end while;
Let

Z P(K) xu

(K u)y:{d;,0,K,u)eS

=(d;,0,S5) = e

(K u):{d;,0,Ku)yeS

expectation(S)

= {(di,0,2(d;,0,5)) : IKIu (d;,0,K,u) € S}

Figure 5: Computing Expectations

The general algorithm is now to compute the policy via:

So = {{di,{},{K € expl(utility(u)): d; € K}, u)
1d; € d};
S1 = optimize(expectation(expand(Sy)))

Then S correspondsto the optimal policy.

5.3 MultipleDecisions

We assume that there is a ‘last’ decision
d = {di,...,dy} € Cy, such that al other decisions that
are part of an explanation of utility which containd arein
n(d) (i.e., are ‘observable’). If thereis no such decision,
then we cannot optimize the decisions one at atime[Zhang
etal., 1994].

The idea of the algorithm for multiple decisionsisthe stan-
dard one: we solve the last decision and either replace it
with a deterministic function corresponding to the policy
(by adding the corresponding rules to JF), or by replacing
therulesfor utility by new rulesthat give the expected util-
ity for the optimal policy [Zhang et al., 1994].

5.4 Refinements

There are many refinements that can be given to the above
procedure. A few are noteworthy:

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

1. Wewant to do subsumption as early as possible. Sub-
sumption can be made as early as the expand proce-
dure. Note that, for those cases where all alternatives
have been subsumed, neither the expectation proce-
dure nor the optimi ze procedure need to do any split-
ting.

2. We redly want to compute the explanations and the
other procedures in alazy fashion — only expanding
enough to see what can be pruned. We want to prune
early and prune often!

3. Although we have specified expl here as an abstract
procedure, it can be computed top-down (asin [Poole,
1993a)), bottom-up (asin an ATMS), and we are also
exploring exploiting structure in a rule-based version
of clique-tree propagation.

6 Conclusion

This paper presented one step in a combination of logic and
probability.

This paper has proposed a mechanism for reducing the case
analysis of dynamic programming. We have exploited the
rule structure of the ICLp in order to determine the cases
where some observations are irrelevant.

The use of rule structure (called ‘tree-structure’ there) for
Markov decision processes has been explored by Boutilier
and colleagues [Boutilier et al., 1995]. Their algorithm is
similar to the ‘fully observable’ case of section 5.1. This
paper expands on this to only consider appropriate group-
ings of observations.

Smith et. a [Smith et al., 1993] have explored the use of
tree-like definitionsfor the conditional probability tablesin
influence diagrams. The difference to this work is that we
only have rules plus independent choices — the influence
diagramisjust one of the representationswe can represent.
Thealgorithmsare also very different, with Smith et. al. us-
ing avariant of Shachter’s algorithm.

Thisisapart of a project to create amix of logic and deci-
siontheory, wherewe can exploit asmuch of the structureas
possible to gain efficiencies. This paper has only scratched
the surface of the issues. Currently under development (or
under consideration) are rule-based variants (that can ex-
ploit the propositional independenceinherent inarulebase)
of common probabilistic algorithmsfor MDPs [Boutilier et
al., 1995], influence diagrams (this paper), POMDPs and
even arule-based version of clique-tree propagation.

The representation used here is also of interest in its own
right in providing logical variables that can be used for
dynamic construction of decision networks (as in [Poole,
1993b]), and can be extended into multiple agents [Poole,
1995b].

Montreal, Quebec, Canada, August 18-20, 1995

Example5.5 Continuing our example, we create the pre-
policiesfor different utilities, some of which are:

(d(0), {}, {{d(0)}},4) 9)
(d(1), {}, {{d(1), a(hi)}},10) (10)
(d(1), {}, {{d(1), a(med)}},3)

These specify the distinctions that are important to deter-
mine utility.

A basic step is to split pre-policies based on the different
possible values of an observable (i.e., we consider each of
the cases for the values of the observable):

Lemmab.6 If (d,0,K,u) isapre-policy, and o € 7(d)
thenforal (¢, K’) € of0), (d,6 U {c},K @ K', u) isapre-
policy.

We only want to do case analysis with respect to an obser-
vation if it isrelevant. The notion of ‘autonomous’ givesa
syntactic criteria for determining if an observation is rele-
vant:

Definition 5.7 If Xy and K, are sets of composite choices
then K; and K, are autonomous if Ve, € Ky Vky €
Ko Vo1 € k1 Yea € ko ﬂfl e C {61,02} C A. Thus
they are autonomousif they involve different alternatives.

The following lemma can be easily proved:

Lemma5.8 If the set of explanations of ¢; and the set of
explanations of g, are autonomousthen ¢; and ¢» areinde-
pendent.

We can stop expanding on observations when all other ob-
servations are irrelevant.

Definition 5.9 Pre-policy (d;,61,k1,u) iS observation
full if for every 6, € = (d) either 6, N 6; # {} or for al
(c, ko) € 0F02), Ko and K, are autonomous.

If pre-policy (d, 8, x1,u) isobservation full, then the other
observations are irrelevant to decision d in the context of
observation 6.

Example5.10 Continuing example 5.5, partia explana-
tion (9) isobservation full: for action d(0) all observations
areirrelevant asfar asthe utility is concerned.

Partial explanation (10) is autonomous of

o {ta(hi), ta(low)}) and o {bs(pos), bs(neg) }, butisnot
autonomous of of {as(pos), as(neg)}).

Figure 4 given a procedure for expanding a set of pre-
policies to an equivalent set that is observation-full. In the
worst case, the set produced will contain one element for
each element of d and each element of expansion(n(d)).
In many cases this will be much smaller. This algorithm

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

procedur eexpand(S):
input: set S of pre-palicies.
output: set of observation full pre-policies.

1. Select (d;,0,K,u) € S and O € w(d) such that
OnN# ={} andthereisone (c,K’) € g O) where
K’ and K are not autonomous.
S:=5—{(d;,0,K,u)} U{{d;, 0 U{c}, K@K u) :
(c.K") € &O)}.

Goto step 1.

2. If thereareno choicesin case 1, return S.

Figure 4: Expanding observations to cover al potentially
relevant cases

contains a selection — the algorithmwill be correct no mat-
ter which elements (that satisfy the conditions) are sel ected.
Different selections may change the size of the resulting set
(e.g., of one observation gives more information than an-
other, this observation should be selected first). Also note
that the case analysiswe do for the observationsisnot sym-
metric — one observation may only be relevant for partic-
ular values of other observations.

Example5.11 Partia explanation (10) needs to be com-
bined with o {as(pos), as(neg)}) resulting in:

(d(1), {as(pos)}. {{d(1), a(hi), ta(hi)}}, 10)
(d(1), {as(neg)}, {{d(1). a(hi), ta(10)}}, 10)

These can the be combined with og{ta(hi), ta(low)} pro-
ducing:

(d(1),{as(pos), ta(hi)}, {{d(1), a(hi), ta(hi)}}, 10)
(d(1), {as(neg), ta(lo)}, {{d(1), a(hi), ta(lo)}}, 10)

Which are then observation full. For decision d(1) value of
bs isirrelevant.

Oncewe havean observationfull set of pre-policies, wecan
then compute expected values (of the utility given decisions
and observations), using the algorithm of Figure 5. Com-
puting expected valuesis complicated by the fact that for a
d; the pre-policiesinvolving different utility valuesmay in-
volve a different split on the observations. This algorithm
computes expected utilities for combinations of values of
observables, splitting cases when necessary. This proce-
dure treats the expectation calculation as one big sum; in
any real implementation we would use some of the more
efficient Bayesian network algorithms (such as clique-tree

propagation).
Given the expected utilities of the observables, we essen-

tially havethefully observable casefrom whichwe can then
use optimzze of Figure 3 to derive the optimal policy.

Montreal, Quebec, Canada, August 18-20, 1995

procedur eoptimize(S):

input: set S of tuples of theform (d;, 6, u), such that
whenever composite choice 6 istrue, decision d; has
utility w.

output: set S of tuples of the form (d;, 6, u), such that
whenever ¢ istrue, decision d; has utility », and d; isan
optimal decision when ¢ istrue.

1. Remove all dominated explanationsfrom S. If we
have two elements (d;, 0;, u;) and (d;,0;,u;) in S
whereu; < uj and #; C 6;, then remove (d;, 0;, u;).
If u; = u; and 6; = #; then remove either one.
[Whenever 0; istrue, we know that d; is better than
d;, and so we don’t need to consider d;.]

2. If there are no dominated elements, and if there are
two elements (d;, 8;, v;) € S and (d;,60;,v;) € S
such that #; U 6; is consistent, d; # d; andv; < v;
do thefollowing: Select o € 6; — 6;. Supposeo isin
observation alternative O. Replace (d;, 8;,v;) in .S by
the split of (d;, 6;,v;) on O. Go to step 1.

3. If neither case 1 nor case 2 is applicable, return S.

Figure 3: Finding optimal policies from observations

The resulting explanations are:

(dy,{a1},7)

(do, {az,e1,c2},6)

(dq,{az,e1,c1},7)

(da, {az,ea,c1},9)

Thiscan beinterpreted as an optimal policy, which saysthat
when a; istruedo d;, when as A e; A ¢co iStrue do ds, €etc.

When none of the cases occur (i.e., when ay A es A ¢ IS
observed) it doesn’'t matter which action is taken.

5.2 Partially Observable Single Decision
The partially observable single decision case consists of 4

steps:

1. finding explanations of utility(U) for each value U
and explanations for the observables, using expl;

2. repeated removing of dominated explanations and
case analysis on relevant observations;

3. computed expected utilities for the relevant cases of
observationsand

4. using the optimize algorithm of Figure 3to generatean
optimal strategy.

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

Suppose we have the last decisiond = {dy,...,dr} € C;.
Dynamic programming would tell us that we have to con-
sider each case of expansion(r(d)) (the set of al valueas-
signments to the ‘parents’ of d) — there are exponentially
many of these (in the size of = (d)). We would like to con-
sider each observable in 7(d) separately, to see when it is
relevant to the decision being made. Thisisdone by the use
of ce

Definition 5.1 If O € =(d) let g 0) = {(o,expl(0)) :
o € O}. g O) isarepresentation for the explanationsof the
possible observationsin O. We assume that for each O €
n(d), that the function o O) is computed once and stored.

Example 5.2 Consider the example of Section 2.1.

For the last decision, namely {d(0),d(1),d(2)}, and for
each ‘observable’, we determine the ocefunction which tells
uswhat it is that the sensors detect:

of {ta(hi), ta(low)})
= {{ta(hi), {{ta(hi) 1), (talio), {{talio) 1)}
o {as(pos),as(neg)})
= {{as(pos), {{ta(hi,a(hi)}, {ta(lo), a(io)}).
(as(neg), {{ta(hi),a(lo)}, {a(med)},
{talio),a(hi)}})}
o {bs(pos), bs(neg)})
= {(bs(pos), {{b(pos), truepos},
{b(neg), false_pos}}),
(bs(neg), {{b(neg), truemneg},
{b(pos), falseneg}})}

Theseare stored, and are combined with the expl anations of
different utilitiesin order to determine the relevant cases.

In general we haveto check correl ations between the obser-
vations and the cases where one decision is better than the
other. Thefully observable case showed the idea of to how
to isolate the cases where the one decision is better than an-
other.

Definition 5.3 Tuple (d;, 6, K, u), where 6 is acomposite
observation and u isanumber isapre-policy if K isaset
of covering explanations of # A utility(u) which contains
d;. Set E, of pre-policiesiscoveringif for every world w -
thereisaunique (d;, 6, K, u) € E,; suchthat d istrueinw,
and one explanation in K istruein w,.

The algorithm works by maintaining a set of covering pre-
policies. These can be set up using:

Lemma5.4 The set
{{di, {}, {K € expl(utility(u)) : d; € K},u) : d; € d} is
acovering set of pre-policies. This can be easily computed
by generating expl (utility(u)) for each u for which there
arerules.

Montreal, Quebec, Canada, August 18-20, 1995

Figure 2: Fully observable, influence diagram

Consider the corresponding ICLpT theory. Here we con-
sider the two values of a to berepresented asa; and as. a;
isthusthe proposition that saysthat a hasonevalue, and a»
is the proposition that says that a has the other value. The
other variables are treated analogously.

Co = {{ar,a2},{er ez}, {cr, o}, {b1,b2}}

G = {{di,d2}}
0 = {{a17a2}1{61162}7{01302},{bl,bQ}}
n({di,d>}) = {{ar,a2},{er,e2},{c1,ca}, {b1,b2}}

Thevaueof P, isirrelevant for the example. Suppose, that
the rule-base representation is of the form:

utility(7) < a1 A dy.
utility(3) « a1 Aex Ads.
utility(5) < ay A ey Ads.
utility(4) < ag Aey Acy Ads.
utility(5) < as Aey Aca Adj.
utility(6) < ag A ey Acy A ds.
utility(7) < az Ay Ady.
utility(9) < az Aey Acy A ds.
utility(4) < az A ez A ca.

When a, istrue, c and b areirrelevant to the utility. When
as A ez A co istrue then the decision isirrelevant. There
is even more pruning that can be carried out when we take
dominated strategiesinto account.

5.1.2 Finding optimal policies

The fully observable case is where either C; is empty or
there is one decision d € C; (the ‘last’ decision) where
n(d) = C — {d}, and when this decision is removed, the

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

remaining theory is fully observable. This case is consid-
ered first; the general, partially observable, case will be a
modification of this case.

Suppose the last decisionis {dy,---,dy } € C;.

Consider for each u for whichtherearerulesfor utility(u),
acovering and exclusive set of explanations of utility(u).
The explanations form a partition on the set of possible
worlds (each possible world will have exactly one explana-
tion true). For each explanation there are two cases:

1. Nod; isinthe explanation. In this case, when this ex-
planation is true, it doesn't matter which decision is
made. For example, in the example above {as, e2, 5 }
is an explanation of a utility that does not involve ei-
ther d; or d>. Whenas Aes Acs istrueit doesn’'t matter
which decision is made.

2. For al of the other cases, we treat an explanation as
atriple (d;,0,u) if # U {d;} is an explanation for
utility(u). If thisisthe case then thealgorithmof Fig-
ure 3 will compute the optimal policy. The algorithm
repeatedly removes dominated explanations and splits
explanations where finer distinctions are needed.

At the end of the algorithm, the resulting explanations
correspondsto an optimal policy with (d;, 6, u) mean-
ing “dod; if 6 istrue, and v will bethe utility”. If more
than one of the ; is true, it doesn’'t matter which ac-
tion is chosen (either the actions will be the same or
the utilitieswill be the same). The 6; will cover all of
the cases not covered in case 1 above.

The worst case of this algorithm occurs when we have to
split on al alternatives — this is the same as enumerating
all states of the observables.

In our example above, for the case where the decision mat-
ters (i.e., for all cases except when as A e3 A ¢o) we have
the following explanations:

(di,{ar},7) (1)
(dy,{a1,e1},3) @)
(do, {ar,es},5) ©)
<d2, {Clz,e],C] },4> (4)
(di,{az,e1,¢2},5) ®)
<d2a {a2761702}76> (6)
(dv,{az,c1},7) (7
(da, {az,ea,c1},9) (8)

Explanations (2) and (3) are dominated by (1) and can be
removed. (5) is dominated by (6) and can be removed. (4)
is dominated by (7) and can be removed. We split (7) on
{e1, ez}, resulting in explanations (d:, {as, e1,c1 },7) and
(dq,{az,ez,c1},7), thelatter of which can be pruned asit
is dominated by (8).

Montreal, Quebec, Canada, August 18-20, 1995

structure can be exploited to reduce the number of opti-
mizations (the technique reported here is orthogonal to the
idea of removing of impossible conditioning scenarios, so
in principle both could be used).

4 Abductive characterisation

The structure is exploited by the use of ‘explanations'. In-
stead of reasoning in the space of possibleworlds (or inthe
space of expansion(w(C'))), we reason in the space of ex-
planations. These explanations only make the distinctions
needed.

In this section we present the ‘ abductive’ view for the case
without negation asfailurein the language. There are some
interesting issues [Poole, 1995a] that arise in combining
this with negation asfailure, but these will only complicate
this paper.

Definition 4.1 A set x of atomic choices is consistent if
thereisno alternative A € C such that [A N x| > 1.

Definition 4.2 A compositechoiceon K C C isaset con-
sisting of exactly one element (atomic choice) from each
Cek.

Definition 4.3 An explanation of ground formula ¢ is a
composite choice s on asubset of C suchthat F Uk = g. A
covering set of explanationsof ¢ isaset of explanations of
g such that any explanation of ¢ isasuperset of an element
of the covering set.

Definition 4.4 If G is a ground propositional formula,
expl(G) is a set of composite choices defined recursively
asfollows:

{} if G = true
expl(A) @ expl(B) ifG=AAB
, ~_) expl(A)Uexpl(B) ifG=AVB
cxpl(G) =14 (e if G € uC
U, expl(B;) if G ¢ UC,
G+ B; € F!

where Ki® Ky = {Hl Uke @ K € Ki,ky €
K, consistent(r1Urkz)}. F' istheset of ground instances
of elements of F. expl is well defined as the theory is
acyclic.

It can be shown that expl(g) is a covering set of expla-
nations of ¢ (this was essentially proved as the appendix
of [Poole, 1993b] and with negation as failure in [Poole,
1995a]) which forms a specification (as a DNF formula of
atomic choices) of all of theworldsin which g istrue.

Explanations form a concise description of cases (only
making distinctions necessary). Sometimes we need to
make finer distinctions, for thiswe need to be able to * split’
composite choices:

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

Definition 45 If C' = {cy,...,c} iISan dternativeand x

is a composite choice such that k N C' = {} then the split
of x on C'isthe set of composite choices

{kU{c1},...,sU{ck}}

Itiseasy to seethat x and asplit of « describe the same set
of possible worlds. The main use for splitting as described
in [Poole, 19954] is, given a set of composite choices con-
struct aset of mutually incompatible composite choicesthat
describesthe same set of possibleworldsasthe original set.
In this paper we show how splitting can be used to construct
optimal policieswithout enumerating all information states
of adecision.

Whenwerefer to ‘the explanations of ¢° arewe mean amu-
tually exclusive (no two explanations are truein any world)
and covering set of explanations of ¢, asfound for example
by expl and either astructure on therule base to ensure mu-
tual exclusivity (thisisthe structure achieved by trandlating
aBayes net into the rules [Poole, 1993b]) or by converting
anon-exclusive set of composite choicesinto an equivalent
exclusive set by splitting and subsumption [Poole, 1995a].

5 Exploiting therule structure

In this section we show how to exploit the rule structure.
We first give the fully observable case, and show how the
rule structure can be used to cut down the case analysis (in
asimilar way to[Boutilier et al., 1995]). We then show dis-
cuss the partially observable case where the observations
only give partial information about the state of the world;
wethen must ‘mesh’ the casesthat makeadifferenceto util-
ity and the cases that can be distinguished by observations.

5.1 Fully-observablecase

5.1.1 Motivating example

In this section we present an example that not intended to
be realistic or meaningful, but demonstrated the algorithm
and the some of the savings.

Consider the fully observable influence diagram of Figure
2. Suppose each of the random and decision nodes rep-
resent a binary variable. In this influence diagram, if we
were to naively apply a dynamic programming procedure,
we would optimize the decision d for each of the 2* = 16
values of the parents. Just by looking at this diagram we
can seethat we do not need to consider the values of b (this
isknown as* barren node removal’ [Shachter, 1986]). Thus
we really only need to consider the 23 = 8 values of the
parents of b. What is presented in this paper islike the bar-
ren node removal, but for specific instances of the parents
(e.g., thevalue of e may be irrelevant for a particular value
of a).

Montreal, Quebec, Canada, August 18-20, 1995

When choosing avalue for d the agent will know values
for ta, as and bs.

Co = {{a(low), a(med), a(hi)}, {b(pos),b(neg)},
{false_pos,true_neg}, { false_neg, true_pos}}.

a can have one of three values, b one of two values, the
other two alternatives specify the noise of the bs sensor.

Within the facts, we axiomatise how the ‘ sensors’ work.

bs isanoisy sensor of b:

bs(pos) < b(pos) A truepos

)
)
bs(neg) < b(neg) A true_neg
bs(neg) < b(pos) A false_neg

bs(pos) < b(neg) A false_pos

We can specify the reliability of the sensor as:

Py(false_pos) = 0.1, Py(true_neg) = 0.9
Py(falseneg) = 0.2, Py(truepos) = 0.8

as isasensor which we can control as to whether it detects
the high values for a or the low valuesfor a (depending on
the value of ta):

as(pos) « ta(hi) A a(hi)
as(pos) « ta(lo) A a(lo)
as(neg) « ta(hi) A a(lo)
as(neg) + a(med)

s(neg) « ta(lo) A a(hi)

Q

We specify the priorson a and b as:

Py(a(low)) = 0.2, Py(a(med)) = 0.3,
Po(a(hi)) = 0.5,
Py(b(pos)) = 0.7, Py(b(neg)) = 0.3

Finally the rules specify the utility function.

utility(4) « d(0)

utility(10) + a(hi) A d(1)

utility(3) « a(med) A d(1)

utility(0) < a(lo) Ad(1)

utility(2) < a(hi) A b(pos) A d(2)

utility(5) « a(med) A b(pos) A d(2)

utility(9) « a(lo) A b(pos) A d(2)
y(®) + b

utelity(8 neg) A d(2)

The above represents the whol e decision problem.

Note that the rules for utility and for the probability of as
incorporate much more structure than is reflected in the in-
fluence diagram.

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

3 Sowhat?

We have presented what seems like quite acomplicated se-
mantic construction. The main question arisesis* So what;
why should anyone be interested?’

First of all thisisalanguagethat formsabridgebetweenthe
purely logical languages, and the probabilistic and decision
theory representations.

If Co isempty, thisisarepresentation for classical planning
that allows for concurrent actions, and uses action comple-
tion (inasimilar way to how [Reiter, 1991] solvestheframe
problem). We can axiomatise the world using logic pro-
grams. We have, however, amore sophisticated way of han-
dling uncertainty than just digunction.

Bayesian networks [Pearl, 1988] can be modelled by Cy
and F, in the same way that probabilistic Horn abduction
[Poole, 1993b] models Bayesian networks. What is added
is a richer language for F, with negation as failure and
fewer restrictions on the form of the rules [Poole, 19953,
aswell as agents with goals [Poole, 1995b)].

The language is closely related to influence diagrams
[Howard and Matheson, 1981]. Elements of C; correspond
to decision nodes in influence diagrams, with =(A) corre-
sponding to the ‘parents’ of the decision node (these rep-
resent information availability when making the decision).
Thevalue nodeisrepresented astherules (in F) that imply
utility(u) for some u.

The main problem considered in this paper is how the rep-
resentation can be exploited for computational gain.

Influence diagram evaluation procedures can be divided
into two classes:

1. Those that do dynamic programming, optimizing
the last action first [Shachter, 1986; Cooper, 1988;
Shachter and Peot, 1992; Zhang et al., 1994].

2. Those that convert the influence diagram into a deci-
sion tree (e.g., [Howard and Matheson, 1981; Qi and
Poole, 1995]), and search it using a search method
such as x-minimax [Ballard, 1983].

Onceit hasbeen realised that efficient Bayesian network al-
gorithms can be used for the probabilistic part of the rea-
soning [Cooper, 1988; Qi and Poole, 1995], the main cost
isin the number of optimizationsthat needsto be done. For
each of the values of the parents of a decision node, one op-
timization is done. This can be improved in the decision
tree methods by not considering those assignments to par-
ents that will have zero probability [Qi and Poole, 1995],
but thereis still much more that can be done.

Themain claim of this paper isthat we can exploit the rule-
based structure to gain efficiency. We show how the rule

Montreal, Quebec, Canada, August 18-20, 1995

The expansion of S correspondsto the cross product of the
elementsof S and, when S consistsof non-intersecting sets,
to the set of minimal hitting sets[Reiter, 1987] of S. The set
of possible worlds corresponds to the expansion of C.

Definition 2.6 An ICLpT theory is utility complete if for
each possibleworld w.- thereisaunique number u such that
w, [utility(w). The logic program will have rules for
utility(u).

Definition 2.7 An ICLpT theory is observation inconsis-
tent if there exists possible world w, and there exists O €
O witho; € 0,05 € 0,01 # 09 sSuchthat w, | 01 A 0.
Otherwisethe ICcLpT theory isobservation consistent. An
ICLpT theory is observation complete if for all possible
worlds w,, and for dl O € O, thereexistso € O such
that w, = o.

The above definitions are to make sure that we can treat the
elements of O as random variables. Unlike elements of C,
they are not exclusiveand covering ‘ by definition’. Wewill
always require a theory to be observation consistent, but,
whenwe have negation asfailurein thelogic [Poole, 1995a]
we will not require the theory to be observation complete
(there may be an extra, unnamed element of each element
of O). Note that observation consistency isnot aseverere-
striction — we can always make O a set of singleton sets,
but then we can’t expl oit the exclusiveness of observations.

Inthispaper weassumeall our theoriesare observation con-
sistent and compl ete.

If an ICLpT theory is observation consistent and observa
tion complete, then for each world w, thereis a unique el-
ement of expansion(O) that istruein w,. Also, for each
C' € C, thereisauniqueelement of expansion(n(C')) that
istruein w,, thiselement iswritten hereas = (C).

Definition 2.8 If (Cy,C1, O, w, Py, F) isan ICLpT theory,
then a(pure) strategy isafunction s onC; suchthatif C' €
Cy, o(C) isafunction expansion(n(C)) — C.

The elements of expansion(n(C)) are the information
available when the decision C' is made. In other words a
strategy specifieswhich element of C' (for each C' € ;) to
choose (‘do’) for each of the possible observations.

Definition 2.9 If 1cLpt theory (Co,Ci,O,m, Py, F) is
utility complete, and o isa strategy, then the expected util-
ity of strategy o is

e(o) = Zp(o, T) X u(T)

(summing over all selector functions ™ onC = Cy U Cy)
where

u(7) = wif wy | utility(u)

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

as

. —>» d

Figure 1: Partially observable, influence diagram

(thisiswell defined as the theory is utility complete), and

[le,ec, Po(T(Co)) if 7(C1) = o(n-(Ch))
foreach C; € C;
0 otherwise

u(7) isthe utility of world w.. p(o,7) is the probability
of world 7 under strategy o. For the worlds that could be
theresult of what the agent chooses (i.e., when the selection
function 7 selectsthe same element of A asdoesthestrategy
o), the probability isthe product of theindependent choices
of nature. It is easy to show that this induces a probability
measure (i.e., for each strategy, the sum of the probabilities
of theworldsis1).

2.1 Representing an influence diagram

In this section we axiomatise the influence diagram of Fig-
ure 1 in order to demonstrate how the above semantic
framework can represent decision problems. This example
will also be used to demonstrate our algorithm. In thisdia-
gram thereisanoisy sensor for b, namely bs, and a control-
lable sensor for a, namely as (the agent can control which
aspect of a it senses).

The problem be represented in our framework as:

Cy = {{ta(hi), ta(low)}, {d(0),d(1),d(2)}}.

There are two decisions to be made; the agent must
choose one of two possible values for ta and one of three
possible values for d.

O = {{ta(hi), ta(low)}, {as(pos), as(neg)},
{bs(pos),bs(neg)}}.
n({ta(hi), ta(low)}) = {}.

The agent has no information available when choosing a
valuefor ta.

w({d(0),d(1),d(2)}) = O.

Montreal, Quebec, Canada, August 18-20, 1995

— we don't need the influence diagram and the rules), as
well as being interesting in its own right as a mix of logic
and decision/game theory [Poole, 1995b]. The meshing is
also easily described in this framework in terms of ‘expla-
nations'. The ICL also naturally has a way to include log-
ical variables, and thus we allow for parametrizable influ-
ence diagrams (see [Poole, 1993b] for a description of the
purely probabilistic case).

2 Thelndependent Choice Logic

The Independent Choice Logic specifies a way to build
possible worlds. Possible worlds are built from choosing
propositions from independent alternatives, and then ex-
tending these ‘total choices’ withalogic program. Thissec-
tion defines the single agent case ICLpT.

There are two languages we will use: £y which, for this
paper, is the language of acyclic logic programs [Apt and
Bezem, 1991], and the language L, of queries which we
take to be arbitrary propositional formulae (the atoms cor-
responding to ground atomic formul ae of thelanguage £).
Wewrite f fvgwhere f € Lp and g € Lg if gistruein
the unique stable model of f or, equivalently, if ¢ follows
from Clark’s completion of ¢ (the uniqueness of the stable
model and the equivalencefor acyclic programsare proved
in [Apt and Bezem, 1991]). See [Poole, 1995a] for a de-
tailed analysis of negation asfailurein thisframework, and
for an abductive characterisation of the logic.

Definition 2.1 A choice space is a set of sets of ground
atomic formulae, such that if C, and C5 are in the choice
space, and C, # C5 then C; N Cy = {}. An element of
achoice spaceiscalled achoice alter native (or sometimes
just an alternative). An element of a choice aternative is
called an atomic choice. An atomic choice can appear in at
most one alternative.!

Definition 2.2 An ICLpT
<Co,cl,o,7T,P01.7'—> where

theory is a tuple

C, called nature's choice space, is the choice space of al-
ternatives controlled by nature.

C; called the agent’s choice space, is the choice space of
alternativescontrolled by our agent (what the agent de-
cidesto do). No atomic choice can be both in an ele-

T Alternatives correspond to ‘variables in decision theory.
This terminology is not used here in order to not confuse logical
variables (that are allowed as part of the logic program), and ran-
dom variables. An atomic choice correspondsto an assignment of
avaueto avariable; theabovedefinition just treatsavariable hav-
ing a particular value as a proposition (not imposing any particu-
lar syntax); the syntactic restrictions and the semantic construction
ensurethat the valuesof avariableare mutually exclusiveand cov-
ering, aswell asthat the variables are unconditionally independent
(see [Poole, 19930])

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

ment of Cy and in an element of C; (i.e,, VCy € Cp
VC, el ConC = {}) LetC =CyUC;.

O theobservablesisaset of setsof ground atomic formu-
lae. Elements of O are called observation alterna-
tives; elements of observation alternatives are called
atomic observations. N.B. elements of observation
alternatives can unify with the head of rules or can be
elements of choice alternatives.

7 the observable function, isafunction = : C; — 2°.
The idea is that when the agent decides which ele-
ment of A € (; to choosg, it will have ‘observed’
one atomic observation from each observation alterna-
tivein 7(A). Elements of n(A) are the information
availableto the agent when it hasto choose an element
of A. We assume a ‘no forgetting’ constraint? which
means that the element of C; aretotally ordered and if
C’l < 02 then C’l c 7T(C(2) and ﬂ(cl) C F(Clz).

Py is a function UC, — [0,1] such that VC' € C,,
Yeec Po(c) = 1. le, Py is a probability measure
over the alternatives controlled by nature.

F called the facts, is an acyclic logic program such that
no atomic choice (in an element of C) unifies with the
head of any rule, and such that thereis an acyclic or-
dering [Apt and Bezem, 1991] where every element of
every element of 7(A) is before every element of A.

The independent choice logic specifies a particular seman-
tic construction. The semanticsis defined in terms of pos-
sible worlds. There is a possible world for each selection
of one element from each aternative. What follows from
these atoms together with F aretrue in this possible world.

Definition 2.3 If S isaset of sets, aselector function on
Sisamapping T : S — US such that 7(S) € S for al
S € S. Therange of selector function 7, written R(7) is
theset {7(5): S € S}.

Definition 2.4 Given ICLpT theory (Co,C1, O, 7, Py, F),
let C = Cy U C,. For each selector function 7 on C there
isapossibleworld w,. If f isaformulain language L,
andw, isapossibleworld, wewritew, = f (read f istrue
in possibleworld w,) if FUR(T) |~ f.

Theexistence and uniquenessof themodel followsfromthe
acyclicity of the logic program [Apt and Bezem, 1991].

Definition 2.5 If Sisaset of sets, theexpansion of S, writ-
ten expansion(S) isthe set {R(r)|r isaseector function
onS}.

2This constraint can be weakened slightly when the utility can
be decomposed into sums [Zhang et al., 1994]

Montreal, Quebec, Canada, August 18-20, 1995

In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence,

Exploiting the Rule Structure for Decision M aking within the | ndependent
ChoiceLogic

David Poole*

Department of Computer Science
University of British Columbia
Vancouver, B.C., Canada V6T 124
pool e@s. ubc. ca
http://ww. cs. ubc. cal/ spi der/ pool e

Abstract

This paper introduces the independent choice
logic, and in particular the “single agent with na-
ture” instance of the independent choice logic,
namely ICLpT. Thisisalogical framework for
decision making uncertainty that extends both
logic programming and stochastic models such
as influence diagrams. This paper shows how
the representation of a decision problem within
the independent choice logic can be exploited to
cut down the combinatorics of dynamic program-
ming. One of the main problems with influence
diagram eval uation techniquesisthe need to opti-
mise adecision for al values of the‘parents’ of a
decision variable. In this paper we show how the
rule based nature of the iICLpT can be exploited
so that we only make distinctionsin the values of
the information available for a decision that will
make a difference to utility.

1 Introduction

Most current approaches to solving decision problems un-
der uncertainty involve a case analysis on al available in-
formation (for exampleon al current and past observations
and past actions in influence diagrams [Howard and Math-
eson, 1981; Cooper, 1988; Shachter and Peot, 1992; Qi and
Poole, 1995], or on the current belief state in partially ob-
servable Markov decision problems (POM DPs) [Monahan,
1982; Cassandraet al., 1994]).

In this paper, we consider how alogic-based representation
of decision problems that treats causal rules as logic pro-
grams can be exploited to reduce the case analysis for dy-
namic programming. Thisrepresentation that allowsoneto
expresslogical rulesand choicesmade by variousagents, is
capable of representing general decision problems (that ex-
tends both influence diagrams and (finite stage) POMDPs).

*Scholar, Canadian I nstitute for Advanced Research

Thelogic isthe independent choice logic (ICL) that allows
for a space of independent choices and a logic program
that gives the consequences of these choices. The choices
can be made by nature (which has probabilities over the
choices) or by purposive agents (who are trying to max-
imisetheir utility). Thel CL extendstheauthor’sprobabilis-
tic Horn abduction [Poole, 1993b] to include negation as
failure and multiple agents. In this paper we only consider
the decision theoretic (single agent under uncertainty) case.
For the no-agent case (with probabilities over choices), the
rulesinduce anindependence equivalent to that of Bayesian
networks. Therulesalso allow the representation of aform
of ‘propositional independence’ where one variable may
only be dependent on another for some values of a third
variable. It isthislast property that we exploit in this pa-
per.

The main point of this paper is to show how the rule-
structure can be exploited to gain efficiency. Therulespro-
vide amodular specification of utility, and a modular spec-
ification of what will be observed when a decision is made
(thisis similar to using decision trees to specify the proba
bility and utility tables [Smith et al., 1993; Boutilier et al.,
1995]). Instead of optimizing a decision for each of itsin-
formation states, we ‘mesh’ the decision trees for the ‘ ob-
servables' (the information available when the decision is
made) and the decision treesfor the utilities, and only make
the distinctions in the observables that matter (would lead
to different utilities). We show by example that this can
cut down on the number of optimizations that we need to
do. The meshing becomes complicated when interleaved
with dominance testing — we want to prune dominated de-
cisions as soon as possible, so we don’t make distinctions
that are only important for decisions than can be shown to
be non-optimal.

This paper could have been described in terms of decision
trees (as does [Boutilier et al., 1995] using a similar idea
for fully observable MDPs, see Section 6). This was not
donefor anumber of reasons. The ICL formsasimplelog-
ical framework that includes influence diagrams (the rules
can encode al of the dependencies of an influence diagram

