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Abstract

Our goal is to describe motion of a moving human figure in order to recognize individuals
by variation in the characteristics of the motion description. We begin with a short
sequence of images of a moving figure, taken by a static camera, and derive dense optical
flow data for the sequence. We determine a range of scale-independent features of each
flow image as a whole, ranging from the motion of the centroid of the moving points
(assuming a static background), to the integral of the torque relative to the centroid.

We then analyze the periodic structure of these sequences. All elements are mul-
tiples of the fundamental period of the gait, but they differ in phase. The phase is
time-invariant, since it is independent of the sampling period. We show that there
are several regularities in the phase differences of the signals. Moreover, some scalar
measures of the signals may be useful in recognition.

The representation is model-free, and therefore could be used to characterize the
motion of other non-rigid bodies. !

!This research was supported by the Natural Sciences and Engineering Research Council
of Canada and the Networks of Centres of Excellence Institute for Robotics and Intelligent
Systems, Project A-1.



1 Introduction

The pattern of motion in human gait has been studied in kinesiology, as well
as in computer vision, as images of moving light displays. Kinesiology describes
the forward propulsion of the torso by the legs, the ballistic motion of swinging
arms and legs and the connections among these motions|LW82, PB81]. The lit-
erature on moving light displays provides an introduction to modeling moving
figures[CS94]. There are two main theories about recovery of gait. The first is
model-based: the 3-D structure of the model is recovered from the moving lights
and then interpreted. The second theory emphasizes determining features of the
motion fields without structural reconstruction. Recent theoretical work demon-
strates the recoverability of affine motion characteristics from sequences[SD94].

There have recently been several attempts to recover characteristics of gait
from image sequences, without the aid of annotation via lights BDP*94, NA94b,
NA94a, PN93, PN94, PN95].

Niyogi and Adelson emphasize segmentation over long sequence of frames
[NA94b, NA94a|. Their technique relies on recovering the boundaries of moving
figures in the XT[NA94a]Jand recently [NA94b] XYT spatiotemporal solids, fol-
lowed by fitting deformable splines to the contours. These splines are the elements
of the articulated nonrigid model whose features aid recognition.

Polana and Nelson[PN93] characterize the temporal texture of a moving figure
by “summing the energy of the highest amplitude frequency and its multiples”.
They use Fourier analysis. The results are normalized with respect to total energy
so that the measure is 1 for periodic events and 0 for a flat spectrum. Their
input is a sequence of 128 frames, each 128x128 pixels. Their analysis consists of
determining the normal flow, thresholding the magnitude of the flow, determining
the centroid of all “moving” points, and computing the mean velocity of the
centroid. The motion in XYT of the centroid determines a linear trajectory.
They use as motion signals reference curves that are “lines in the temporal solid
parallel to the linear trajectory”.

Polana and Nelson’s more recent work[PN94, PN95] emphasizes the spatial
distribution of energies around the moving figure. They compute spatial spatistics
in a coarse mesh and derive a vector describing the relative magnitudes and
periodicity of activity in the regions, over time. Their experiments demonstrate
that the values so derived can be used to discriminate among differing activities.

Our work, in the spirit of Polana and Nelson, does not fit a model for the



moving figure but instead describes the variation over time of a set of features of

a dense flow distribution.

2 Method

Image sequences are gathered while the subject is walking laterally before a static
camera and processed offline. Motion stabilization could be accomplished a track-
ing system such as [LK93] that pursues a moving object. Only one subject moves
in the field of view. Figure 1 shows the viewing conditions in our lab. Figure 2
shows eight images from a sequence of 18 (from 08 to 25) for this subject. Only
one field in a frame is used, because of the substantial difference between the
two fields caused by motion. This reduces the vertical resolution, and spatial
averaging reduces the horizontal resolution, resulting in 256x256 images. The
system processes subimages that are manually selected from the original image.
Since the camera does not move, selecting the subimage only speeds up motion

processing and does not affect the results.

2.1 Describing Flow

Unlike other methods, we use dense optical flow fields, generated by minimizing
the sum of absolute differences between image patches [BL.P89]. The algorithm is
sensitive to brightness change caused by fluorescent lights, reflections, or shadows,
so we further process the images to assess the total temporal variation over a
region. Each pair of images is filtered with a Gaussian of ¢ = 3 to determine a
local average brightness. We ignore motion where the average local brightness
change is below a threshold. The algorithm determines displacements between
pairs of images, both forward and backward in time, which then must pass a
symmetric validation test. The validated flow values are then thresholded at 1.0
pixels per frame, yielding a blob, a set of moving points, together with their flow
values. Figure 3 shows the blobs or moving points for eight images from sequence
06.

The motion of the object is a path in 3 space; we view its projection. We
assume orthographic projection for our analysis since the effects of projection are
negligible. The system determines the centroid of all moving points, where each
point has unit mass; these centroids arise from the mass distribution in Fig. 3.

A second weighted centroid is computed where each point is “weighted” by the
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Figure 1: One image from the sequence

magnitude of the motion at the point, as shown in Fig. 4. The major component
in the motion is the x-component, shown in Fig. 5.

The second moments of the two distributions provide the best-fitting ellipses
for the the moving points, unweighted and weighted by the magnitude of the
motion at the point. The ratio of the lengths of the major and minor axes of
these ellipses is a scale-invariant measure of the distribution of motion, reflecting
both the position and velocity of the moving points.

Another measure that includes not only the motion but the location of the
motion is the “torque” around the centroid: at each point we compute the vector
connecting the point to the centroid and then the dot product of that vector and
the flow at the point. To make this measure scale-invariant we scale by the square
of the length of the vertical axis of the ellipse.

The descriptions include:

e the y-coordinate of the centroid
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image 13 image 14
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Figure 2: Image sequence 06

e the y-coordinate of the weighted centroid
e the difference of the y-coordinates of the two centroids

e the relative shape (or elongation)—the ratio of the length of the major axis

to the minor axis of an ellipse
o the average velocity
e the distribution of velocities, weighted by magnitude and unweighted.

o the angle of the major axis of the ellipse with vertical

We generate several signals from the optical flow field. The centroid of the
moving regions is an important reference point. The centroid of the moving
points, weighted by the magnitude of the flow, is another. Their relative positions
varies systematically over the sequence. Figure 6 displays the centroid as a box
and the ellipse that fits the moving points in solid lines. The centroid of the

weighted points i1s shown as a cross and its ellipse is shown in dashed lines.
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Figure 3: The moving points for sequence 06

2.2 Frequency and Phase Estimation

To estimate the frequency of the short time series, we use Barrodale and Er-
ickson’s least-squares linear prediction (LSLP) method and maximum entropy
estimation [BE8Oa, BES0Ob]. LSLP? computes a set of coefficients that predicts
future values of a time series, z,, i.e. it computes m coeflicents, a;,7 = 1,..,m,

such that: -
Y=Y ajz_j,t=m+1,m+2,..,n, (1)

i=1
is an estimate of ;. Equation (1) may be expressed as the system of linear

equations:

Ba=y, (2)

2The following discussion is taken from [BE80a].
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Figure 4: The magnitudes of velocities for sequence 06

where
Tm Tm—-1 ... T1
Tm+1 Tm N )
B = ,
Tn-1 Tp—2 - Tpom
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ay Tm+1
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Figure 5: The x component of velocities for sequence 06

Solving for a from the symmetric positive definite system of equations:
B"Ba = Bly, (3)

gives a set of coefficents that minimizes the L, norm of the prediction error, i.e.,
the least-squares solution. Barrodale and Erickson also show variations of the
method that yield coefficients optimized for reverse prediction and forward and
backward prediction combined. We solve the forward and backward prediction
variation using LU decomposition [PTVF92].

The coefficients provide the autoregressive parameters required for the maxi-
mum entropy spectrum of the time series using:

PLAt

— 4
|1 _ _;nzl ajezw_yAt|2 ( )

P(w) =

where At is the sampling period, P,, = S,,/2(n — m), and S, is the Ly norm of

the residuals. Five coefficients are sufficient to estimate the spectrum for the time
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Figure 6: The centroids and fitting ellipses for images 14 and 17 in sequence 06

series considered here. We compute the spectrum from the coefficients for a set of
frequency values using Equation (4), and find the frequency at which the spectrum
is maximum. For example, Figure 7 shows a short time series that is the y position
of the centroid of motion in an image sequence. Figure 8 is the LSLP maximum
entropy spectrum based on five forward and backward prediction coefficients. The
figure shows the frequency w expressed as a ratio of f;, the sampling frequency,
where f, is 1/At. The spectrum shows a definite maximum that identifies the
frequency of the motion. This method avoids problems associated with using
discrete Fourier transforms to estimate spectra of a short time series.

Given the fundamental frequency of the time series, it is a simple matter to

compute the phase of the signal. The coefficients of the Fourier representation of
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an infinite time series are given by [OS89]:
X(eiw) — Z xte—iwt (5)
t=—o00

Since we know the frequency of the maximum in the spectrum, w,,,,, we compute

the Fourier coefficent for that frequency from the finite time series using:
X(eiwmam) — Z wte—iu)mamt‘ (6)
t=1

The phase angle of the complex coefficent X (e*ma=) gives the phase of a signal
with respect to a fixed reference and allows comparison of the phase relationship

between various signals from the same sequence.

3 Experimental results

We study the phase difference between the signals we identify: the y-coordinate
of the centroid, the y-coordinate of the weighted centroid, and their difference.
We use the first as a reference and take the difference of the other two with the
first.

10
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Figure 9 shows the paths of the centroids of the moving points over the entire
image sequence, images 08 through image 25. Lines connect corresponding cen-
troids (from the same image). The centroids lie on a solid curve and the centroids
of the weighted points lie on a dashed curve. Unlike this figure, Fig. 7 shows the
y-coordinate as a function of time.

The long-term trend may not be constant in y, but the result is such a low-
frequency term that it will not appear in the frequency analysis.

The following table shows the frequency f. of the centroid y-value, its phase
¢c, and the phase of the weighted points ¢,., and their difference ¢g;rs. The
frequency we find is the frequency of the arm-leg movement, and is twice the

frequency of the full gait cycle.
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Figure 9: The sequence of centroids from sequence 06, images 8 through 25,
shown as paths in image space. Solid lines connect the centroids of blobs, and
dashed lines connect the centroids of weighted points. Solid lines connect the two

centroids from each image.

Seq. | fe be Duwe bdaiff
01 |0.13 |0.430 | 0.230 | -.010
02 |0.14 |-.125 | 0.43 | 0.268
03 |0.15 |-.277 | -.439 | 0.300
04 | 0.105 | 0.434 | 0.280 | -.466
05 |0.100 | -.215 | -.464 | 0.432
06 | 0.105 | -.177 | 0.388 | 0.416
07 |0.100 |-.300 | -.368 | 0.375
08 |0.105 | 0.379 | 0.015 | -.056

The frequency of the components of a particular gait is consistent across the
various measures, as would be expected because of the periodic nature of gait.
However, because the frequency is a measure of the speed of a gait, it cannot itself
be used to identify a person. The first three image sequences are of a seven-year
old boy, and their frequencies are higher, as expected.

There are several measures that can be extracted from this information. We
use the phase change between the components of the flow. To determine the phase
for the signals, we use the fundamental frequency computed from the sequence of
the centroids’ y-values. Its phase is the reference phase value. We then compute
the difference between the phase values for each signal. The differences between
the phase of centroid’s y-value ¢. and the phase of the weighted points ¢, is

feature 1, F'1, and the difference between the reference and ¢4 is feature 2, F'2.

12
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Phase is represented as fractions of 2 between —0.5 and 0.5. The following table

shows phase differences for the weighted centroid and the centroid difference.

F1 F2

Seq. | Gc — bue | be — Daifs
01 | 0.200 0.440

02 | -.443 -.281

03 | 0.162 0.423

04 |0.140 0.900

05 | 0.249 0.353

06 | 0.435 0.407

07 | 0.068 0.325

08 | 0.364 0.435

Figure 10 shows these points (F'1, F'2) in a 2-D space that is toroidal: both
the F'1 and F2 coordinates wrap around since they refer to phase. Figure 10
shows these points (F'1, F'2) in a 2-D space that is toroidal: both the F'1 and F2

coordinates wrap around since they refer to phase.
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The following table lists the phases of the signals arising from the axes: ¢,;
the axes of the weighted point distribution: ¢,,; and the torque: ¢;.

Seq. | ¢q Pua | P

01 |-.026 | -.048 | -.465
02 | 0.157 | 0.169 | 0.300
03 10.320 | 0.254 | -.152
04 |-.223 | 0.060 | -.095
05 | 0.405 | 0.312 | 7.777
06 | 0.478 | 0.413 | -.068
07 |0.180 | 0.272 | -.009
08 |-.022 | -.065 | 0.457

The differences between the phase of centroid’s y-value ¢. and the phase of
ratio of the axes of the blob ¢, is feature 3, F'3; the phase difference of ratio of
the axes of the weighted points ¢, is feature 4, F'4; and the difference between
the reference and the phase of the torque ¢; is feature 5, F'5. The following table
describes F'3, F'4, F'5. Figure 11 shows these points (F'3, F'4).

F3 F4 F5
S5eq. | Pe — ¢a | Pe — Pua | P — P
01 |0.456 | 0.478 -.105
02 |-.170 |-.182 -.425
03 | 0.403 | 0.469 -.429
04 |-.343 | 0.494 -471
05 |0.380 | 0.473 7.277
06 |0.345 | 0.410 -.109
07 |-.480 | 0.428 -.291
08 |0.401 | 0.444 -.078

Other features we have computed include the average velocity of the figure,
by averaging the flow vectors (not by differencing the position of the centroids).
This feature does not separate the gaits, since there is little variation, ranging
only from -.344 to -.124.

Sequences 01, 02, and 03 are of the same person (child) and 05 and 08 are of
an adult. 04, 06, and 07 are three other persons. 05 and 08 do not show strong
similarity, but 01 and 03 are quite similar in (F'1, F'2) as well as in (F'3, F'4), and

F'5. Sequence 02 is an awkward motion sequence; often being under observation

14
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causes unusual gaits[PB81]: “When one thinks about his or her walking patterns,
tension is developed and rhythm and coordination are upset.”
We use the vector of features (F'1, F'2, '3, F'4) to discriminate among the gait

sequences. The following table shows the squared differences between the feature

vectors.

JL FIX TABLE

Seq. | 01 02 03 04 05 06 07 08
01 |0.00|1.76 | 0.00 | 0.93 | 0.23 | 0.07 | 0.91 | 0.63
02 | 1.76 | 0.00 | 1.61 | 0.86 | 0.77 | 1.86 | 1.10 | 1.39
03 |0.00 | 1.61 | 0.00 | 0.83 | 0.18 | 0.08 | 0.80 | 0.62
04 10.93]0.86|0.83|0.00]0.58]0.82]0.21 | 1.51
05 10.23]0.77 | 0.18 | 0.58 | 0.00 | 0.33 | 0.53 | 0.44
06 |0.07|1.86|0.08 |0.82|0.33|0.00 | 0.82 | 0.55
07 {091 |1.10 | 0.80 | 0.21 | 0.53 | 0.82 | 0.00 | 1.39
08 |0.63|1.390.62|1.510.44|0.55|1.39 | 0.00
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Sequence | Best match | Distance
01 03 0.00
02 04 0.86
03 01 0.00
04 07 0.21
05 01,08 0.02
06 08 0.02
07 04 0.21
08 05 0.02

Sequences 01 and 03 are each other’s best match, and 08 selects 05 as its best
match, but 05 does not. Several other sequences match 05 better than 08.

4 Discussion

The analysis of moving figures begins with a distribution of moving points in two
dimensions. We analyze the dense 2-D optical flow of the person and derive a
series of measures of the position of the person and the distribution of the flow.
We then determine the frequency and phase of these periodic signals. The relative
phase of various measures become features of the motions. We use these features
to characterize the gait of several persons.

The regularity of the resulting measures shows that a model-free approach
based on the motion distribution is feasible. Further extensions might relax the
constraint of absence of models to allow the two main moving substructures, the
legs and arms, to be modeled independently. We expect that other features we

can extract from these signals may allow discrimination between persons.
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