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Abstract

In this paper we describe a technique for surface
recovery of a rotating object illuminated under a
collinear light source (where the light source lies on
or near the optical axis). We show that the surface
reflectance function can be directly estimated from
the image sequence without any assumption on the
reflectance property of the object surface. From the
image sequence, the 3D locations of some singular sur-
face points are calculated and their brightness values
are extracted for the estimation of the reflectance func-
tion. We also show that the surface can be recovered
by using shading information in two images of the ro-
tating object. Iteratively using the first-order Taylor
serious approximation and the estimated reflectance
function, the depth and orientation of the surface can
be recovered simultaneously. The experimental results
on real image sequences of both matte and specular
surfaces demonstrate that the technique is feasible and
robust.

1 Introduction

Shading in images can be used for surface recovery,
for example, in shape from shading [2, 7], photomet-
ric stereo [13, 14, 15], and photometric sampling [4].
In order to use shading information, the reflectance
function of the surface under recovery must be known.
The most commonly used assumption is Lambertian
reflectance [11, 7] because of its simplicity. In photo-
metric stereo [14, 15], the reflectance function is com-
puted from a calibration object of known shape whose
surface is made of the same material as the surface of
the object under consideration.

However, for most real objects, the surface re-
flectance is not Lambertian. The Lambertian assump-
tion is only valid in some limited cases and limited
lighting and viewing conditions [12, 10, 6]. Empiri-
cal photometric stereo [14, 15] requires that the cal-
ibration object and the object under recovery have
the same reflectance function and be illuminated and
viewed under the same conditions. The calibration
process may become difficult or impossible when we
cannot find a suitable calibration object.

We compute the surface reflectance directly from an
image sequence of a rotating object and then use the
surface reflectance function to recover the orientation

and the scaled surface depth. The rotating object is
on a turntable whose rotation angle can be controlled.
A collinear light source, which points in the same di-
rection as the camera viewing direction, and lies on
or very near the optical axis, gives a uniform radiance
over the object. The images are taken when the ob-
ject rotates on the turntable. Under the illumination
of a collinear light source, the image brightness of a
surface point is a function only of the incident angle
¢ which is the angle between the illuminant direction
and the surface normal.

The estimate of the reflectance function is based on
a set of singular surface points whose surface normals
are in the viewing direction. The 3D coordinates of
the singular points are computed from image points of
the maximum brightness values and the corresponding
contour points in the image sequence. Given the 3D lo-
cations of these singular points, their brightness values
in the image sequence are extracted. The brightness
values and the corresponding incident angles during
the rotation are used to build the reflectance function.

Two subprocedures are used in surface recovery.
The first subprocedure computes the depth around
an image point of known depth and surface orienta-
tion by using first-order Taylor series approximation.
The second procedure finds the orientation of a sur-
face point of known depth value. This subprocedure
computes the projections of the surface point on two
different images and calculates the orientation of the
surface point from the brightness values in the two
images. Starting from a surface point of known depth
and orientation and iteratively applying the first and
second subprocedure, the computation on the depth
and surface orientation can be expanded over the ob-
ject surface. The calculation for surface orientation
can be done by look-up table just as in photometric
stereo [14, 15].

Section 2 introduces the experimental setting for
our work. Section 3 presents a method for building
the reflectance function. Section 4 describes surface
recovery process. Section 5 shows some experimen-
tal results on real image sequences. The final section
discusses experimental results and future work. The
technical report [3] provides an extended discussion of
this material.
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Figure 1: Experimental setup

2 Experimental Conditions

The imaging geometry is shown in Fig. 1. The ob-
ject is on a turntable whose rotation angle can be
controlled. The Y axis coincides with the rotation
axis of the turntable. Both the camera viewing direc-
tion and the light illuminant direction are aligned with
the Z axis. The light source is a distant light source
with uniform radiance over time and illuminated area.
Since the camera is far away from the object, ortho-
graphical projection is used. To obtain the projection
of the rotation axis in the images, a vertical black line
on a white board is aligned with the rotation axis and
then identified from the image of the board. Images
are taken when the object rotates around the Y axis
in the direction from the X axis to the Z axis.

The surface of the object 1s assumed to be piecewise
continuous and differentiable. The surface orientation
is defined as (p,q,1) with p = Jz(z,y)/0z and q =
Oz(z,y)/0y. When the object rotates, the coordinates
and the orientation of the surface points on the object
change. Let (z,y,z) be a 3D surface point on the
object and (p, ¢, 1) be the surface orientation of this
point, After an a degree rotation, the 3D location of
this point (24, Yo, 2a) = (zcosa—zsinea, y, zsina+
zcos a) and the surface orientation (pg, qq, 1) of this
point is determined by

pcosa + sin «

Pa = —————), (1)
cosa — psina

q ‘

Qo = ———————— (2)

cosa — psin«

We also assume the reflectance of the object surface
is uniform. In the general case, the image brightness of
a 3D point under a distant light source is determined
by the reflectance function R(i,e,g) [13], where the
incident angle 7 is the angle between the incident ray
and the surface normal, the emergent angle e is the
angle between the emergent ray and the surface nor-
mal, and the phase angle ¢ i1s the angle between the
incident and emergent rays. Under a collinear light
source, as shown in Fig. 2, the phase angle g becomes
zero and the incident angle 7 becomes the same as the
emergent angle e. In this case, all the components of
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Figure 2: Under collinear light, the image brightness
only depends on angle ¢

the reflectance such as the specular component, diffuse
component and other components [10] are functions of
the incident angle ¢ only. Thus for the surface point
(z,y, z), its image brightness value can be written as

E(z,y) = R(i(z,y)) (3)

where i(z,y) is the incident angle at point (z,y, z).
We assume the function is strictly monotonic and its
inverse exists. This is true for most surfaces.

3 Estimating the Reflectance Function

The estimate of the reflectance function is based
on singular surface points whose surface orientations
are the same as the viewing direction. These singular
points also have singular brightness values in the im-
age because the incident angles of these surface points
is zero. Let point (z;,ys,zs) be one of these points.
The values of z; and ys; can be directly found from
the image by searching for a point of local maximum
brightness. To determine z,;, we look at the image
taken after the object has rotated by 90 degrees. In
that image, the singular point is projected on an oc-
cluding contour point. It is easy to find the location
of the contour point since its y coordinate is already
known. The value z; of the singular point is the hor-
izontal distance from the contour point to the image
of the rotation axis. Considering generic surfaces, we
assume that some singular points whose images are
available in the first image and will not be occluded
during 90 degree rotation.

Given the depth values of these singular points in
the first image, we can extract their brightness val-
ues from the 1image sequence. For the singular point
(zs,Ys,2s5), after the object has rotated by an angle
; < 90°, the 3D location (z;, i, z;) of the singular
point is (zs cosb; — zssin b, ys, xssmb; + z5 cosb;).
The image brightness F(z;,y;) of this point can be
directly obtained from image point (z;, ;). The in-
cident angle for the singular point is the same as the
object rotation angle #;. From the brightness F(z;, y;)
and the corresponding incident angle 6;, we can build
the reflectance function for the surface.

The dark line in Fig. 4 shows the reflectance func-
tion £ = R(i) obtained from an image sequence of a
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Figure 3: Tracking the singular points over the image
sequence

vase. Nineteen images of the vase are taken during a
90 degree rotation. The rotation angle between two
consecutive images in the image sequence is 5 degrees.
The images in Fig. 3 are four images of the rotating
vase. The images (a), (b), (c¢) and (d) are the images
taken after rotation by 0, 30, 60, and 90 degrees, re-
spectively. The white line in the middle of each image
is the virtual image of the rotation axis of the object.
Three singular points are extracted from the image
sequence. The center of the small square box in each
image denotes the image of a singular surface point.
The average of the brightness values of the three sur-
face points is used to build the reflectance function.
The estimated function are shown in Fig. 4. Only
the three singular points on the body of the vase are
tracked and used to estimate the reflectance function.
The singular points on the handle are not used for the
estimation because interreflection make the brightness
values of these points much bigger than these points
on the body part. However, the 3D locations of these
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Figure 4: The estimated reflectance function of the
vase

singular points can be easily found and can be used in
surface recovery.

The vase 1s made of clay and the surface of the vase
is considered a matte surface. The dotted line in Fig. 4
shows the reflectance function of an ideal Lambertian
surface with the same maximum brightness value as
that of the estimated function. Although the surface
of the vase i1s considered a matte surface its surface
reflection is not exactly Lambertian.

4 Surface Recovery

Surface recovery can be done by using any two im-
ages in the image sequence of the rotating object after
the reflectance function has been obtained. Without
losing generality, we use the first image and the image
taken after the object has rotated by a certain angle.
The depth and surface orientation are computed at ev-
ery point in the first image. Surface recovery uses two
subprocedures to compute the depth and surface ori-
entation. The first subprocedure does local expansion
of depth using surface orientation by first-order Tay-
lor series approximation. For an image point (z,y),
if the depth z and the surface orientation (p, ¢, 1) are
known, the depth z’ of an image point (z +dz, y+dz)
in the small neighborhood of the image point (z, y) is
calculated by 2/ = 24z = z+ pdx + qdy. The second
subprocedure computes the projections of a surface
point of known depth value on the two images and
and determines surface orientation (up to a two-way
ambiguity) from image brightness values. The follow-
ing calculation shows how we derive orientation from
image brightness.

Let imagey be the image taken before the rotation
and tmage; be the image taken after a degree rota-
tion of the object. Let (2, yo) and (21, y1) be the pro-
jections of a 3D surface point in imagey and image;
respectively and their brightness values are F(zq, yo)
and F(z1,y1). Using the inverse reflectance function
i = R7I(E), we obtain the incident angle iy and i;
from F(zo,yo) and E(z1,y1). Let the surface orienta-
tion of the 3D point be (pqg, o, 1) when imageq is taken
and the surface orientation of the same 3D point be
(p1,q1, 1) when image; is taken. From the definition
of incident angle and the transformation between the



object coordinates, we have

1

Cos iy = —F—m———, (4)
pi+ap+ 1
1
COSil = ﬁ’ (5)
Vpitag+1
Po COS o + SIN
=, (6)
cos a — pg sin
and ¢
0
= ——"" (7)

cos o — pg sin «

Substituting p; and ¢; in Equation 5, we get

1
cosi; = ; (8)

\/1+ (pgcosoz+sinoc)2 +( go )2

cos a—pp sin cos a—pg sin «
The equation can be simplified to
cos iy = cosip(cos & — pgsin ). 9)

Solving Equation 9 for py and from Equation 4, we get

1 cos 1
po = - — (10)
tana  cosigsina
= =4+ ! 21 (11)
fo = cosig Po ’

The surface recovery procedure starts at the im-
age points whose depth and surface orientations are
known. These starting points could be the singular
image points we used to compute the reflectance func-
tion. For each starting point, we use the first subpro-
cedure to compute the depth for the image points in
its neighborhood. For each neighbor point, we used
the second procedure to compute its projection on the
other image from its depth computed by the first pro-
cedure and determine its surface orientation from its
two brightness values in the two images. Applying the
first subprocedure on the neighbor points, we expand
the depth over a larger area. Applying the second
subprocedure on the larger area, we compute surface
orientation for the large area. By iterating the first
and the second subprocedures, we spread the compu-
tation over the whole image to obtain the depth and
surface orientation at the same time. The number of
local operations in this process is linear in the number
of pixels in the image. The surface recovery procedure
can be described as follows.

Surface recovery procedure

1. Take an image point of known depth and surface
orientation in ¢magegy as an input point.

2. Calculate the depth values for the image points
in the small neighborhood of the input point with
first-order Taylor approximation.

3. For each neighbor point, calculate its projection
on image; by using its depth value computed in
the first step.

4. For each neighbor point, estimate its incident an-
gle 7y and #; from its brightness values in imageg
and image; by using the inverse of the reflectance
function; then determine its surface orientation
by using Equation 10-11.

5. Take each neighbor point as the input point and
repeat steps 2-4 until the depth and orientation
has been computed at every point in imageq.

When we compute a new depth value 2’ in the y
direction, we have z/ = z + ¢dy. Thus an ambigu-
ity in depth occurs as there are two solutions of ¢
obtained from Equation 11. There is no ambiguity
when we expand the computation in the z direction
as the solution for p is unique. The ambiguity in the
depth caused by the ambiguity in ¢ can be removed
by the continuity constraint and some points of known
depth values. We first select a non-horizontal curve of
known depth values at some points in the first image.
We compute the depth and surface orientation by it-
erating the first and the second subprocedures, and
remove the depth ambiguity on the curve. Then we
take points on the curve as starting points and com-
pute depth in the z direction. We divide the curve
into several paths with each path starting and ending
at the points of known depth values. We assume that
any value of ¢ along a path is not zero. Two depth val-
ues are computed at each point and two sets of depth
values will be found on a path. It is clear that only
one of the two sets is the correct set and at the end
of a path, only the depth value from the correct set
matches with the known depth. By this fact and the
continuity constraint, the correct depth values along a
path can be determined. The computed depth values
will not exactly match with the known depth value at
the end point of a path, because of image noise and
some other errors, but they are close enough so that
the ambiguity can be removed.

Since the locations and the depth values of singu-
lar points can be easily found from images, we usually
select a curve which passes through several singular
points for removing the ambiguity. In our experiment
we select a curve p = 0 because the depth values on
this curve correspond to an occluding boundary in the
image taken after the object is rotated by 90 degrees.
This boundary gives us the true depth values on the
curve so that we can check the accuracy of the com-
puted depth values. Fig. 5(a) and (b) are two images
of a vase used for surface recovery. The image in (a)
is taken before rotation, and the image in (b) is taken
after a 10 degree rotation. The white curve on the
body part of the vase in (a) is the curve of p = 0. The
curve should be smooth and continuous but it is not
because of image noise, non-uniform albedo and other
facts. The straight line in the middle of Fig. 5(c)-(f)
denotes the line of depth=0. The horizontal distance
from a point to the line is the depth value. The center
of the small boxes in the diagrams represents the true
depth value used for removing ambiguity. These true
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Figure 5: Computing depth on a curve and removing
the ambiguity in the depth

depth values are obtained from the occluding bound-
ary of the image taken after the object has rotated by
90 degrees. The two sets of depth values computed for
the curve are shown in (c). The correct set of depth
values, after removal of the ambiguity, is shown in (d).
Since the depth computed at the end point of a path
will not be exactly the same as the known depth at
that end point, the depth computed on a curve which
consists of several paths will not be continuous (see
Fig. 5(d)). The discontinuity on the depth in (dg is
mainly caused by non-uniform albedo on the object
surface. The discontinuity occurs at a point which
is the starting point for a path and ending point for
another path or the ending points for two paths.

A distance-weighted averaging method is used to
make the depth value continuous on the curve. The
idea is to make the depth value at the two ends of
a path equal to the known depth values. For a path
which connects two points (zg, yo) and (2, yx) with
Yo # Yk, the computation of depth and orientation
along the path can start from either of the two points.
Thus two sets of depth values along a path can be
obtained (see Fig. b(e)). Let Z;, (¢ = (0,k)) be a
set of depth values computed along the path start-
ing from (z;,y;) and ending at (zx_;, yk—;). Let the
known depth value at the point (z;,y;) be z. Let
point (z;,y;), 0 < j < k, be a point on the path and
let z; ; be a depth value in 7Z; and computed at point
(z,y;). Since (zg, yo) is the starting point for Z; and

(2k, yk) 1s the starting point for Zx, we have z5 ¢ = 2o
and zpr = zx. In the general case, zpr # 2z and
Zk0 # Z0. A new depth value Z; is calculated at point

(zj,v;) by
. (k=2

o J2kj
ST T

(12)

It is easy to show that Zo = 20 = 20 and 2 = 2z 1 =
zg. After recomputing depth for some paths which
cause discontinuity, we get continuous depth values
on the curve. Furthermore, if the depth along a path
before the averaging is smooth, the depth along the
path after the averaging is also smooth. The recom-
puted depth values are consistent with the original
depth values at several known 3D points, and the re-
sulting depth values are close to the real depth values.
In Fig. 5(f), the true depth and the recomputed con-
tinuous depth are represented in one image. The two
sets of depth values are quite close.

5 Experimental Results

In experiments, we use a calibrated image facility
(CIF) [15] in our lab to control the rotation of the ob-
ject and the imaging condition. We use a DC powered
beamed light source and mount it on the top of the
camera. The light source and the camera point in the
same direction at the object on a turntable. In prac-
tice, the radiance of the light source is not constant
over the illuminated area. We use a uniform white
board to calibrate the non-uniform illumination. Since
the distance from the camera to the object is far big-
ger than the size of the object, the camera is set to
telephoto mode and orthographic projection is used.
The actions of rotating an object and taking images
are well synchronized by a computer. Nineteen images
of a vase are taken with each successive image taken
after a successive 5 degree rotation. The total rotation
for the image sequence is 90 degrees.

The images are smoothed with a Gaussian filter of
o = 1 to filter image noise and quantization effects.
Four images from the image sequence of the vase are
shown in Fig. 3. The estimated reflectance function
of the vase is shown in Fig. 4 as a dark line. In sur-
face recovery, the first image (Fig. 5(a)) and the im-
age taken after a 10 degree rotation (Fig. 5(b)) are
used. We first compute depth and surface orientation
along a curve of p = 0 (see Fig. 5(a)). The depth
ambiguity on the curve caused by the ambiguity in ¢
is removed by the method described in the previous
section. The continuous depth values are obtained
by the distance-weighted averaging. In Fig. 5(f), it
is overlapped with the true depth value on the curve.
Starting from points on the curve, we expand the com-
putation on the depth and surface orientation in the
x direction by z’ = z + pdz until we reach the back-
ground. This process may not reach some areas, such
as handle part, in the image. Then we expand the
computation in the y direction to reach the unrecov-
ered areas. For each of these areas, we repeat the
process of computing depth along the curve of p = 0,
removing the depth ambiguity on the curve and ex-
panding the computation in the z direction.
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Figure 6: The height plot of the recovered surface

Figure 7: The image sequence of a cup

The surface plot of the final recovered depth of the
vase is shown in Fig. 6. Surface plots are displayed
with Matlab by using the depth values calculated on
the first image. We did not do any smoothing or reg-
ularization on the depth data.

We also experimented with a porcelain cup. The
reflectance of the cup presents a strong specular re-
flection. There are peak brightness values at singular
points on the surface of the cup. Fig. 7 contains four
images of the cup. Tmage (a) to (d) are the images of
the cup taken after the 0, 30, 60, 90 degrees rotation.
Three singular points are tracked to get the surface
reflectance function. In Fig. 8, the dark line denotes
the reflectance function of the cup, and the dotted line
is the Lambertain reflection with the same maximum
brightness value as that of the estimated reflectance
function. The difference between the two reflectance

(a) (b)
(c) (d)

The reflectance function under collinear light source
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Figure 8: The surface reflectance function of the cup
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Figure 9: The height plot of the recovered cup

functions i1s obvious. The final recovered surface of the
cup is shown in Fig. 9.

6 Discussion and Future Work

The experimental results are promising. Since we
don’t assume the reflectance function has any partic-
ular form, the reflectance estimation method in this
paper can be applied to any surface of isotropic reflec-
tion. Though we did not do experiments on synthetic
images with added noise, we did perturbations on the
depth at the starting point and on the projection of
the rotation axis. The perturbations on the starting
point only affect the surface points near the starting
point and do not change the surface which is far from
the starting point. Shifting the rotation axis 3 or 4
pixels does not make much difference on the final re-
sults.

The surface of the vase is not as uniform as we ex-
pected. On the surface of the vase, the reflectance
on the middle body part is stronger than that on the
lower body part. The depth discontinuity on the curve
of p = 0 on the body (see Fig. 5(d)) is mainly caused
by this non-uniform reflection. The depth difference



at the point of the discontinuity point is large. The
surface reflectance of the cup is quite uniform so the es-
timated reflectance function is accurate for the whole
surface of the cup. The depth values computed on
the curve of p = 0 is quite close to the real depth
value. The depth difference at the point of discon-
tinuity i1s small. For both cup and vase, the joints
between the body and the handle have been success-
fully recovered. The joints can not be recovered by
the techniques which just using occluding contours in
the 1mage sequence.

From analysis on the image sequence and the sur-
face recovered, we know that the errors on the re-
constructed surface mainly come from three sources:
the error in estimation of the reflectance function, the
non-uniform albedo over the object surface and the
interreflection on the object. To reduce the error in
the estimation of the reflectance function, we can use
more singular points or use other surface points whose
surface orientation and 3D location can be computed
by other cues such as contours [16]. To reduce the
error caused by non-uniform albedo, we can extract
the reflectance function for a local area of relatively
constant albedo and use the local reflectance function
for the local surface recovery. This idea can be ap-
plied to an object whose surface has different colors
or different albedos. This is our current area of re-
search. Reducing the error caused by interreflection
in the general case is very hard [5]. So far we do not
have effective methods for removing interreflection on
surfaces.

Besides shading, there are other kinds of cues such
as contour and stereo available from an image se-
quence of a rotating object. Contours in an image se-
quence of a rotating object can be used to compute the
location and orientation of some surface points [16].
These surface points can be alternatives when singular
points are not available for extracting reflectance func-
tion. One limitation in our work is that the estima-
tion of the surface reflectance function relies on a set
of singular points on the object surface. Our current
work attempts to use contours to remove this limita-
tion. Stereo information can provide the 3D location
of starting points for our surface recovery procedure.
The stereo information can also remove the ambiguity
in the ¢ component of surface orientation. The inte-
gration of all the cues is not an easy task [8, 9, 17, 1].
Extending our work to more complicated surfaces will
require integrating other cues.

Another extension of our work is surface recovery
by rotating the object more than 90 degrees. In this
way, we can get more singular points and obtain a
more accurate estimate of the reflectance function.
We can also construct the whole object by integrating
depth recovered from different views. The intended
application of our work is automatic modeling. Be-
side modeling the shape of an object, we also want to
model the color of an object.
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