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Abstract

This paper presents a coherent synthesis of
logic and decision theory and shows how it
can be used. We allow an axiomatization
of the world in definite clauses from a set
of assumables. These assumables are parti-
tioned into the set of controllable assumables
and uncontrollable assumables. The uncon-
trollable assumables have probabilities asso-
ciated with them. The logic allows multiple
concurrent actions and lets us predict the ef-
fects for both the uncontrolled and controlled
cases. We show an example of its use and ar-
gue that abduction, particularly probabilis-
tic abduction, lays an important groundwork
for decision theoretic and probabilistic plan-
ning. The main empirical claim is that un-
certainty and choices can be represented as
independent exogenous events using logic to
give the consequences of the events, resulting
in a powerful and yet simple representation.

1 Introduction

We propose decision-theoretic abduction as a general
framework for studying planning. Abduction can sim-
plify the representation of plans and provides an alter-
native to deduction as a framework for understanding
planning. Abductive planning, or assumption-based
planning, has a number of other advantages, such as
simple semantics, easy implementation, and straight-
forward extensions to handle probability and decision
theory. In the rest of this abstract, we consider prob-
abilistic abduction as applied to planning.
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In moving planning into real world applications, is-
sues of uncertainty become increasingly important. In
the real world, typical assumptions of complete knowl-
edge and deterministic change, including deterministic
effects of actions, are inappropriate and inadequate.
To this end, researchers have proposed a variety of
methods for handling uncertainty, such as probabil-

ity and decision theory, in the decision-making process
(18, 28, 4, 13, 6, 17, 3].

At the same time, in addressing issues of diagnosis,
or explanation in general, researchers also find that
uncertainty must be addressed. In determining the
cause of an effect, for instance the disease causing some
symptom in medical diagnosis, it is rarely possible to
determine with certainty the disease from among a
number of possible candidates. Researchers have pro-
posed various methods of abduction with probability
to address diagnosis with uncertainty (e.g., [11]).

Our aim is to develop a coherent framework that incor-
porates both planning and diagnosis. Our framework
for temporal projection is implemented, and has been
pretty well tested for the axiomatization of Section 4.
In this paper, we describe the basic representational
methodology underlying our research strategy.

2 Review

Abduction can be described as follows. Given a logical
theory (the “facts”) and a set of assumables, an ezpla-
nation of a goal is a subset of the assumables that is
consistent with the facts and which together with the
facts logically implies the goal.

2.1 Planning as Abduction

First, we review ideas behind the use of abduction in
planning (e.g., [7]). The general idea of planning as ab-
duction is as follows. We assume that we have a logical
theory and a set of controllable propositions (i.e., a set
of propositions which the agent can set true). Given a
goal G that an agent is interested in achieving, a plan



is a set of propositions which

1. are achievable by the agent and
2. if they were true, the goal would be true.

The set of controllable propositions are typically in-
consistent and contain incompatible choices (e.g., “I
get up early” and “I sleep in”, or “Block 47 is put on
the table” and “Block b7 is thrown on the floor” and
“block b7 is put on block 63”). An achievable set of
propositions is a subset of the controllable propositions
that is consistent with the logical theory.

There may be a cost or utility associated with a plan
reflecting how good it is, but that under this approach
all plans are guaranteed to achieve the goal (the goal
logically follows from the achievable propositions being
true).

2.2 Recognition as Abduction

A more traditional view of abduction [24] is where the
assumables are assumptions about what may be true,
and the goal is an observation. If the facts are causal
rules;, then an explanation is a logical theory about
what could have caused the observation.

One interesting instance of this is probabilistic Horn
abduction [25], where there are probabilities over the
assumables. Assumables are grouped into disjoint sets
corresponding to random variables. The random vari-
ables are probabilistically unconditionally independent
(i.e., if @ and 3 are assumables and they are not in the
same disjoint set then p(a A 8) = p(a) x p(5)). The
logic is definite Horn clauses with no assumables at
the heads of clauses (this means that the logic cannot
impose any dependencies on the assumables). There
is an isomorphism [25] between the propositional ver-
sion of probabilistic Horn abduction and Bayesian net-
works [21]. We can represent arbitrary dependence by
inventing hypotheses.

2.3 Game/Decision Theory

Decision theory and its multi-agent counterpart, game
theory [27, 9], are normative theories of reasoning un-
der uncertainty. The framework below should be seen
as representation based on the normalized [27] (or
strategic [9]) form of a game, with possible world cor-
responding to a complete play of a game. What we
have added here is that a logic program can be used
to give the consequences of the play. This allows us to
use a logical representation to represent the world, in
particular the consequences of choices. The abductive
view means that we only have to consider the relevant
parts of the strategies at all times. Below we have
only given the one player with nature version of the
strategic form, but it can be extended in a reasonably
straight forward way to to the multi-agent game the-
ory case. See [23] for details.

3 Decision Theoretic Abductive
Planning

The framework we are proposing [23] is one where
there are three sets of formulae, namely a set of con-
trollable propositions which the agent can set, a set
of uncontrollable propositions with probabilities over
them, and a set of facts (definite Horn clauses) which
tell us the consequences of these propositions.

Definition 3.1 A decision theoretic abductive
planning theory is a triple (R, C, F'), where

R is a set of sets of ground atomic formulae. An ele-
ment of R is called a random variable. An atomic
formula can only appear in only one random vari-
able. There is a probability assigned to each el-
ement of each random variable, where sum the
probabilities of the elements in each random vari-
able is one.

C is a subset of R. An element of C is called a con-
trollable set. The aim is that the agent can con-
trol the values of the random variables in C'. The
probabilities of elements of controllable sets are
optional, and if they are present, it means that
the agent does not have to control the variable.
The probabilities are for the case where the agent
does not set the values of the variable.

F is an acyclic [1] set of definite Horn clauses, such
that no member of a random variable is at the
head of any clause.

Note that when C' is empty, then this exactly corre-
sponds to a probabilistic Horn abduction theory.

The semantics is defined in terms of possible worlds.
There is a possible world for each selection of one el-
ement from each random variable. The atoms which
logically follow from F' are also true in this possible
world.

Formally, the base of a possible world w is a set of
variables that appear in some random variable, such
that for every V in R there is exactly one element of V'
in the base of w. Two worlds are the same if they have
the same base. Atom a is true in world w if it can be
derived (using SLDNF) from F'Ubase(w), and is false
otherwise (in other words w is the stable model [10]! of
F Ubase(w); a stable model semantics enables the use
of negation as failure in the theory). The measure of
w is the product? of the probabilities associated with
the elements of the base of w.

1As FUbase(w) is acyclic there is a unique stable model
and it can be computed using SLD resolution with negation
as failure [1].

2When R is infinite, we need a more sophisticated mea-
sure as in [25]. That will only complicate this paper,
however.



It is easy to see that when we choose an element of each
controllable set (making that element have probability
one and the other elements of that set have probabil-
ity zero), this measure over possible worlds satisfies
the axioms of probability (as the possible worlds are
disjoint and the sum of the probabilities of the possible
worlds is one) and so imposes a conditional probability
over our language.

We can see the relationship to abduction because to
determine the probability of any ¢ we need only con-
sider the minimal explanations of g (with elements of
R as assumables). Moreover, if we set up the rules so
that the bodies for each rule are disjoint (i.e., if a — b;
and a <« by are two rules for a, then there is no possible
world in which by and by is true), then the probability
of g can be obtained by adding the probabilities of the
explanations of g. The probability of an explanation
can be obtained by multiplying the probabilities of the
elements of the explanation. The rules in our example
below are designed so that the rules are disjoint so that
the probabilities of the explanations can be added. See
[25] for details.

We assume that some of the propositions that are con-
cluded by R are of the form utility(U) meaning that U
is a number representing the utility. We assume that
R and F' are such that there is at most one U such
that utility(U) is true in any world. As a convention
we assume that there is a base utility of 0 that is the
utility of the worlds where utility(U) is not defined for
any U (this allows us to have rule bases that are not
complete with respect to utility).

A plan is a set of elements of controllable sets such
that there is at most one element from each control-
lable set in a plan. The expected utility of plan P is
defined by

EU(P) =" p(utility(U)|P) x U.

The aim is to select a plan which maximizes the ex-
pected utility.

Note that if we have a goal GG, whose probability we
want to maximize, we add the clause utility(l) — G.
With no other clauses for utility, then the plan which
maximizes the probability that G is achieved is the
maximum utility plan.

4 Representing Actions in the Logic

The preceding section presented a semantic framework
that is independent of the representation of the ac-
tions. In this section we present a temporal represen-
tation that can allow for multiple concurrent actions
where actions can be seen as controllable propositions.

We adopt a nonreified temporal logic [2]3, with a dis-

?We do not explicitly adopt a 2-sorted logic, as the only

crete temporal structure. What is important is the
use of propositions parameterized by temporal terms
rather than, for example, the discreteness of time.
Note that under this representation, the notion of a
possible world in the above semantics corresponds to
a complete temporal evolution of the world (i.e., it says
what happens at times 0, 1, 2 etc).

For expository reasons we develop the representation
for an example domain. The domain that we present
is a variant of the blocks world that we call the “pesky
blocks world”. In the pesky blocks world, as in the
real world, sensors can be faulty and effectors can
make mistakes. Executing actions in the pesky blocks
world may result in their intended effects only some
of the time. For example, if b is on ¢ in situation
0 (represented on(b,¢,0)), and we put b on a in situa-
tion 0, (represented puton(b,a,0)), the intended effect,
namely on(b,a,0 + 1), may not be true in all situa-
tions. Possible reasons may be that the effector fails
to pick up b, drops b, or misses @ and ends up toppling
over the whole tower that a is in. Thus, there may be
uncertainty about what holds true in the state after
executing an action, and there is a tradeoff between
blindly following a plan and looking at the world to
see (or infer) what the true state of the world is. In
our framework, we represent an action and its possi-
ble effects in terms of hypotheses about what actually
happens. A probability distribution over the hypothe-
ses encodes our uncertainty about the actual effects of
an action.

Our action ontology is more general than that of
STRIPS planners [8]. There are no action precondi-
tions per se in the pesky blocks world. Any action
may be attempted at any time, but if the necessary
conditions for their intended effects do not hold, then
the effects may be completely different. For example,
if a target block a is not clear in situation 0 (there is
something on top of it), then attempting puton(b, a,0)
may result, among other possibilities, in toppling over
the whole tower that a is a part of.

Let us now present in more detail part of our domain
theory for the pesky blocks world. The decision the-
oretic abductive planning language is an extension of
pure Prolog with facilities for representing controllable
actions and probabilistic hypotheses. The statements
in the language are partitioned into random variables
R, controllables C', and facts F', as before. Let us first
describe controllables.

The controllables are action attempts. These are
grouped into disjoint and covering sets, reflecting what
we can “logically” attempt (e.g., it doesn’t make sense
to attempt to put block a both directly on top of block
b and directly on top of block ¢). In the pesky blocks

times that will arise are 0,1,2,.... Because our implemen-
tation does not use an equality theory, we will just use the
times 0,0 +1,0+1+1,....



world, the controllables set C' is

{{puton(X, Z,5), careful(X, Z, S), nothing(X, S)
: Z is a block }
: X is a block , S is a state }.

with the following intended interpretations:

puton(X,Z,S) : Attempt to put block X on Z in sit-
uation S. This is the standard blocks world “pu-
ton” action, except that as noted, there are no
preconditions in the classical sense, and it may or
may not have the desired effect.

careful(X,7,S) : Carefully put block X on Z in sit-
uation S. The careful action is exactly like puton
except that it is less prone to error and it takes a
longer time to execute.

nothing(X,S) : Do nothing to X in situation S.

Random variables model possible states of affairs in
the world over which we have no control. These repre-
sent the choices that nature makes about how things
turn out. A random variable statement has the form

random([a1 (V) : p1,az(V) i pa, ..., an(V) : pn])

which means that for every tuple ¥ of ground terms in
our language, {a1(?), ..., a,(?)} € R and thus the a;(?)
represent n possible disjoint and covering hypotheses
about some possible state of the world , and the pg
represent the prior probability of ag(%). The p; must
sum to 1.

As an example, when a puton(X,Y,S) action is exe-
cuted, it may “succeed” (that is, its intended effects
ensue), it may result in X dropping on the table, or
it may result in the effector toppling over the whole
tower that Y is on. Thus, there are three possible
outcomes, which are modeled as follows:

random([puton_success(X, S) : 0.8,
puton_drop(X,S) : 0.15,
puton_topple(X,S) : 0.05]). (1)

This says, for example, that the prior probability of
success for a puton action is 0.8.

Note that the form of the random variables gives us a
form of integrity constraints [15]. For example, in (1),
the success of a puton action prevents the occurrence
of dropping or toppling. The possible outcomes cannot
all take place at the same time.

Note that in the semantics, there is a possible world in
which nothing(a, 1) and puton_success(a, 1) are both
true. In other words we are doing nothing with block
a at time 1, but if we did put a on some block it would
succeed. While this may seem strange, it is important
to allow if we want to have independent events. It
is also very important when we want to have condi-
tional plans that are adopted by agents without know-
ing what other agents are doing (here we can see na-
ture as adopting a conditional plan to make the block

succeed if it is being put on something — see Sec-
tion 6 and [23]). While this is true in the semantics,
the abductive view lets us consistently ignore whether
puton_success(a, 1) is true unless we actually attempt
to put a on some block. Thus when reasoning we do
not have to consider these incompatible alternatives.

Rules describe the effects of assumptions over the con-
trollables and random variables. Each rule is a definite
Horn clause of form

H —By,...,By,.
or
H — true.
The latter is used to describe a rule with an empty
body.

Let us now illustrate our framework by presenting
some axioms describing the pesky blocks world. First,
let us examine the case when a puton action is exe-
cuted. What we wish to know, of course, is the state
of the world after the action is executed. The propo-
sitions (fluents) of interest are on and clear? ; what
blocks are on top of what blocks, and which blocks
have nothing on top of them.

If puton is attempted, on relations are inferred on the
basis of axioms such as:
on(X,Z7,S+1) —
puton(X, 7, S)
Aputon_success(X, S)
Aputon_preconds(X, Z, S).
on(W,table, S + 1) —
puton(X, 7, S)
Aputon_topple(X, S)
Aputon_preconds(X, Z, S)
Nbelow(W, Z, S).
on(X,table, S+ 1) —
puton(X, Z, S) A puton_topple(X, S)
Aputon_preconds(X, Z, S).
This axiom states that block X is on block Z in S +1,
provided that X was attempted to be put on Z in

S, the puton succeeded and the preconditions for the
puton were true in state S.

Although there are no preconditions required for
an attempt of a puton action, there are conditions
that affect whether or not a puton attempt is likely
to succeed. We represent these conditions through

4 . . . . .
As we are using negation as failure we can axiomatize
clear as

clear(X,S) —~ on(Z,X,S) AN X # table.

clear(table, S) — true.

where ‘~’” means negation as failure [23].



the proposition puton_preconds(X, Z,S) that is true
whenever the necessary (but not sufficient) conditions
for a successful puton(X,Z,S) hold true. It can be
defined this way:

puton_preconds(X,7,S) —
clear(X,S) A
clear(Z,S) A
X#£ZA
X # table.

Other on relations that are caused by a puton attempt
can occur because putting on topples the target tower:

on(W,table, S+ 1) —
puton(X, 7, S)
Aputon_topple(X, S)
Aputon_preconds(X, Z, S)
Nbelow(W, Z, S).

on(X,table, S+ 1) —
puton(X, Z, S) A puton_topple(X, S)
Aputon_preconds(X, Z,S).

In the case where a puton results in dropping the block,
the effects are the same as for the case where the ac-
tion succeeds except that the block ends up on the
table rather than on its destination (but only if the
destination was a block to begin with):

on(X,table, S + 1) —
puton(X, Z,S) A puton_drop(X, S)
Aputon_preconds(X, 7, S).

We have now described the axioms for the case where
puton is attempted and the preconditions are satis-
fied. Similar axioms can be used for the case when the
preconditions do not hold.

The frame axioms can use the notion of clipping:

on(X,Y,S+1) —
on(X,Y,S) A
~ clipped_on(X,Y, S).

Where clipping is defined as:

clipped_on(X,Y,S) —
puton(X,Y, S)
Aputon_preconds(X,Y, S).

clipped_on(A, B,S) —
puton(X, 7, S)
Aputon_preconds(X, Z, S)
Aputon _topple(X, S)
Nbelow(A, Z, S).

b
c f
a d e g

Figure 1: A blocks world situation.

In other words, on(X,Y) is are no longer true are when
we have tried to put X on Y or when X is below a
block that is toppled.

We also have to consider the case where the precondi-
tions of the actions do not hold. These can be done in
an analogous, way. For example, suppose that if the
preconditions are false, then either nothing happens,
or the whole tower above X is toppled, and those below
X are toppled:

random([puton_same(X, S) : 0.8,
puton_messup(X,S) : 0.2]).

One axiom for messup is the following:

on(A,table, S+ 1) —
puton(X, Z, S)
A ~ puton_preconds(X, Z, S)
Aputon_messup(X, S)
A(below(A, X, S)
Vabove(A4, B, X, S)).

In addition to effect axioms, we need to state the initial
conditions and desired conditions. For example, these
describe the initial situation in figure 1.

on(a,table,0) — true.
on(b,c,0) — true.
on(c,d,0) — true.
on(d, table,0) — true.
clear(a,0) — true.
clear(b,0) — true.
on(e,table,0) — true.
on(f,e,0) — true.
on(g,table,0) — true.
clear(f,0) — true.

clear(g,0) — true.

As for desired conditions, in general, in a decision the-
oretic framework, there may not be a goal in the clas-
sical sense in planning, because we consider not only
what state we want to achieve, but the relative merits
of the states that we may get into if our actions don’t
achieve the goal.



Suppose we have the case that it is best if the goal to be
achieved after 4 steps, but if another goal is achieved
after 5 steps it is only half as good.

goal(S) — on(d,c, S) Aon(c,b,S)
Aon(b,a,S) Aon(a,table, S).

alt_goal(S) — on(d,b,S) A on(b, table, S).

utility(10) — goal(S) A S < 4.

utility(5) — alt_goal(S) A S < 5.

Once we have a theory, we can project the conse-
quences of actions (and inaction) using assumption-
based reasoning. Our current implementation is a
modified version of the probabilistic Horn abduction
interpreter [25] with the addition of controllable ac-
tions and negation as failure. This interpreter uses
logic programming technology to build up proofs of
states of the world on the basis of assumptions.

Given our theory, we can, for example, find out the
likelihood of success of doing puton(b, a,0). That is,
under what assumptions might on(b, a,0+ 1) be true
given puton(b,a,0)? Our interpreter finds one ex-
planation puton_success(b,0), with prior probability
0.8. Thus the probability of on(b,a,0+ 1) is 0.8.
What about the likelihood that b ends up on the ta-
ble? There are two explanations for on(b,table, 0+ 1),
namely puton_topple(b,0) and puton_drop(b,0), with
prior probability of 0.05 and 0.15, respectively. The
probability of b being on the table is the sum of all of
its explanations, or 0.2. In a similar fashion, we can
also find out the utility of a given plan.

5 Concurrent Actions and Exogenous
Events

In our framework, we can represent concurrent actions
and exogenous events in a straightforward fashion (cf.
[19, 20, 22, 26]). In fact, one way to look at the effect
axioms in the previous section is that an effect results
from the execution of concurrent actions by an agent
(through the controllables) and by nature (through the
random variables). It is also possible to model concur-
rent actions in the sense of two agents undertaking
actions at the same time, or an agent undertaking two
tasks at the same time.

For example, there is nothing to prevent attempting
puton(b,a,0) and puton(yg, f,0) at the same time. In
fact, this is the reason why the effect axioms for puton
do not include frame axioms about what does not
change as a result of a puton. We cannot do that
if different puton actions could be taking place con-
currently.

In the framework that we have presented in this pa-
per, an agent has to make a commitment with regard
to all controllables. The agent has to decide for each
block whether to move the block or whether to do

nothing with the block for each situation. An alter-
native (which we have also implemented) is to have
each controllable as a random variable that may have
a default value (or prior distribution) that takes over if
no no choice is made for the controllable by a decision
maker.

6 Conditional Plans and Influence
Diagrams

In this section we show how conditional plans can be
embedded within our framework, essentially without
adding anything to the basic framework. This will
be done first in the context of influence diagrams [14],
and then we will show how we can go beyond influence
diagrams.

Whereas most work in designing decision theoretic
plans has considered what is effectively the extensive
form of a game, where the output is in terms of if-
then-else rules, we will adopt the form of the strate-
gic form, where a plan (strategy) is an adoption of a
function from observables (sensor values and/or par-
tial memory of state) to actions (actuator values) [9].
It turns out that strategic games are more powerful:
the strategic form can easily handle the case where
there is not total recall (the agent doesn’t necessarily
remember everything it has chosen), as is the case for
most (real and artificial) agents.

We here show how to represent influence diagrams;
we extend the representation of Bayesian networks in
probabilistic Horn abduction [25] to show to represent
decision nodes. Value nodes are just represented as
definite Horn clauses that imply a particular utility.
Suppose we have decision d with parents p1, -, pp
(these are either decision nodes or random nodes),
then we have to adopt a policy of what for each of the
values of p1,- -+, pm. Suppose each of the variables are
binary with values yes and no, and we write d; = yes
to mean the decision/action is yes and p; = no to
mean the value of variable p; is no, etc. This decision
can be represented using the single rule

di:V‘_pl:Vl/\"'/\pm:VmASd,(V;Vh"';Vm)

With {sq,(yes, V1, -, Vin),84,(no, V1, ---, Vi) } being
in C' for each value of Vq,---,Vy,. Thus the agent is
to chooses one action for each value of the parents.

Influence diagrams represent one very limited case of
our representation; one where we know what decisions
will be made at each step and what information will
be available, and where the agent remembers all pre-
vious observations and decisions. Each decision must
encode the stage in the plan where it is; the agent must
be able to step through the decisions in the right order
(as opposed to the agent being forgetful or even purely
reactive). It also does not allow for concurrent actions
(these must be coalesced into a large composite deci-



sion which offers as alternatives all combinations of all
possible actions and non actions).

7 Agents with Limited Abilities

The representation of actions we gave in Section 4 as-
sumes that the agent cannot look at the world, but
can remember what step they are in the plan. We can
represent programs for various limitations of the ca-
pability of agents. For example, a program for purely
reactive agent that has no memory and can only react
to the values of sensors can be represented in the form

do(X,S) — val(sensory, V1,S)A - -
Aval(sensory, , Vi, S) A cond_do(X, V1, -, Viy)

with {cond_do(X,Vi,---, V) : X is possible action }
is in C for every value of Vi, -+ V,,. The opti-
mal plan corresponds to the optimal purely reactive
(stateless) agent with the m sensors given. We would
also need axioms stating how the sensor values de-
pend on the state (i.e., rules with heads unifying with
val(sensor;, V;, S)). Again, a proper influence dia-
gram cannot represent this reactive program because
a proper influence diagram enforces the no-forgetting
constraint wherein an agent must remember its past
decisions.

For example, following from the example of Section 4,
suppose the agent has two sensors one can sense how
many blocks are on the table and one can sense how
tall the tallest tower is, but the cannot remember what
step they are at. This can be represented using rules
such as:

puton(X, Z,S) — num_ontable(N, S)
Atallest_tower(H) A cond_puton(X, Z, N, H)

and similar rules for careful and nothing. C would
contain,

not instances of puton, but {cond_puton(X,Z, N, H),
cond_puton(X,Z,N, H), cond_puton(X,Z, N, H) : Z
is a block} for each value of X, N and H.
We would also axiomatize num_ontable(N,S) and
tallest tower(H), which are straight forward to de-
fine in terms of on. Note that these relations would
define the output of the sensors; these sensors could
be faulty. This again is easy to add: we add random
noise in the definitions of these relations.

The optimal plan here will be the optimal purely re-
active agent with only these two sensors.

8 Related Work

[7, 5] provide abductive characterizations of tempo-
ral projection and planning in the event calculus [16].
Our work contrasts with that work foremost by our
interest in the representation of uncertainty and pref-
erence for use as a decision-theoretic abductive basis
for planning.

Haddawy [12] presents a logic for the representation
of actions and utilities that is considerably richer than
ours. Our research strategy should be seen as one
of designing minimalist representations that embody
pragmatic compromises between heuristic and episte-
mological adequacy and testing them by axiomatizing
domains and building implementations.

9 Conclusions

The work outlined here is part of an ongoing research
project by the authors and others. We have only
sketched some ideas here. There is plenty of work to
be done in this area but, we believe, also plenty of
potential.

We have presented a theory that enables us to make
temporal projections abductively. This tells us the
consequences of actions that we may perform, includ-
ing the utility of planning. We have concentrated on
providing a specification of what an optimal plan is
rather than how one should be computed.

The combination of a Horn causal theory with ab-
ducible actions and events, and probabilities over the
assumptions provides a simple and, we argue, practical
representation that easily handles concurrent events
including actions, and that can be extended with util-
ities to yield a decision theoretic plan representation.

In our framework, when we make an observation,
we essentially remove from consideration all possible
worlds that are incompatible with the observation.
This corresponds to abducing to the causes: the set of
minimal explanations of the observation is a succinct
description of the set of possible worlds consistent with
the observation (the consistent possible worlds are ex-
actly those that extend the minimal explanations of

the goal) [24].

Finally, we must be careful to note that adopting an
abductive framework for planning is principally a rep-
resentational commitment. It does not in itself solve
many of the classical planning issues such as search.
This is one of the (many) problems we have to solve
to make this the representation of choice for planning.
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