]. Constraint Programming in Constraint Nets

Ying Zhang and Alan K. Mackworth

1.1 Abstract

We view constraints as relations and constraint satisfaction as a dy-
namic process of approaching the solution set of the constraints. We
have developed a semantic model for dynamic systems, called Constraint
Nets, to provide a real-time programming semantics and to model and
analyze dynamic systems. In this paper, we explore the relationship
between constraint satisfaction and constraint nets by showing how to
implement various constraint methods on constraint nets. In particular,
we examine discrete and continuous methods for discrete and continu-
ous domain constraint satisfaction problems. Hard and soft constraints
within the framework of unconstrained and constrained optimization are
considered. Finally, we present an application of this on-line constraint
satisfaction framework to the design of robot control systems.

1.2 Motivation

Constraints are relations among entities. Constraint satisfaction can be
viewed in two different ways. In a logical deductive view, a constraint
system is a structure (D,F) where D is a set of constraints and F is
an entailment relation between constraints [20]. In this view, constraint
satisfaction is seen as a process involving multiple agents concurrently
interacting on a store-as-constraint system by checking entailment and
consistency relations and refining the system monotonically. This ap-
proach is useful in database or knowledge-based systems, and can be
embedded in logic programming languages [2, 5, 9]. Characteristically,
the global constraint is not explicitly represented, though for any given
relation tuple the system is able to check whether or not the relation
tuple is entailed.

In an alternative view, which in our opinion is more appropriate for
real-time embedded systems, the constraint satisfaction problem is for-
mulated as finding a relation tuple that is entailed by a given set of
constraints [12]. In this paper, we present a new approach in which
constraint satisfaction is a dynamic process with the solution set as an
attractor of the process. “Monotonicity” is characterized by a Liapunov

2 Chapter 1

function, measuring the “distance” to the set of solutions over time.
Moreover, both soft and hard constraints can be represented and solved.
This approach has been taken in neural nets [18], optimization, graphi-
cal simulation [16] and robot control [15]. However, it has not yet been
investigated seriously in the area of constraint programming.

We have developed a semantic model for dynamic systems, called Con-
straint Nets, to provide a real-time programming semantics [24] and to
model and analyze robotic systems [25]. Here we investigate the rela-
tionship between constraint satisfaction and constraint nets. The rest of
this paper is organized as follows. Section 1.3 describes some basic con-
cepts of dynamic processes. Section 1.4 introduces Constraint Nets and
constraint solvers. Section 1.5 presents various constraint methods for
solving global consistency and optimization problems. Section 1.6 sum-
marizes the framework. Section 1.7 discusses an application to control
synthesis for robotic systems.

1.3 Properties of Dynamic Processes

In this section, we define dynamic processes and discuss the relationship
between dynamic processes and Liapunov functions.

1.3.1 Metric spaces

Let R be the set of real numbers and Rt be the set of nonnegative real
numbers. A meiric on a set X is a function d : X x X — R¥ satisfying
the following axioms for all z,y,z € X:

1. d(z,y) = d(y, z).

2. d(z,y)+d(y,z) > d(z, 2).

3. d(z,y)=0iff z = y.

A metric space is a pair (X, d) where X is a set and d is a metric on
X. In a metric space (X, d), d(z,y) is called “the distance between z
and y.” We will use X to denote the metric space (X, d) if no ambiguity
arises.

Given a metric space (X,d), we can define the distance between a
point and a set of points as d(z, X*) = infyecx~ {d(z,2*)}. For 2* € X
and € > 0, the set N¢(z*) = {z|d(z,z*) < €} is an e-neighborhood of
x*; it is strict if it has at least one point other than z*. For X* C X,
NYX*) = Upeex» N(x¥) is an e-neighborhood of X*; it is strictif it is

Constraint Programming in Constraint Nets 3

a strict superset of X*.

Let 7 be a set of linearly ordered time points with a least element
0. 7 can be either discrete or continuous. Let X be a metric space
representing a discrete or continuous domain. A tracev:7T — X is a
function from time to a domain. We use X7 to denote the set of all traces
from 7 to X, a trace space. Given a metric space (X, d) and a trace v :
T — X, we say v approaches a point ¢* € X iff limy_.o d(v(t),2*) = 0;
v approaches a set X* C X iff limy— oo d(v(t), X*) = 0.

1.3.2 Dynamic processes

Let p: X — X7 be a mapping from a domain X to a trace space X7
and ¢,(x) = {p(z)(t)|t € T} be the set of values in trace p(z), p is a
dynamic process iff p satisfies the following three conditions:

1. V&, p(2)(0) = «.

2. Va,y,t, if p(z)(t) = p(y)(t) then V&' > ¢, p(z)(') = p(y)(¥').

3. Va,y, if y € ¢,(x) then ¢,(y) C ¢,(x).

Intuitively, p characterizes a state-based and time-invariant dynamic
system. Furthermore, let ¢,(X*) = (J, ¢ x+ ¢p(2) for any X* C X.

A point z* € X is an equilibrium (or fizpoint) of a dynamic process p
iff V¢, p(2*)(t) = ¥, or ¢,(¢*) = {2*}. A set X* C X is an equilibrium
of a dynamic process p iff ¢,(X*) = X*. An equilibrium X* is stable
[13] iff Ve36, ¢, (N(X™)) C NE(X*).

A set X* C X is an attractor [19] of a dynamic process p iff there
exists a strict e-neighborhood N¢(X™*) such that Yo € N¢(X™*), p(z)
approaches X*. The largest neighborhood of X* satisfying this property
is called the attraction basin of X*. X™* is an aftractor in the large iff
Vz € X, p(z) approaches X*| that is the attraction basin of X* is X. If
X* is an attractor (in the large) and X* is a stable equilibrium, X* is
called an asymptotically stable equilibrium (in the large).

LEmMma 1 If {X;}er are ((asymptotically) stable) equilibria, then | J; X;
is an ((asymptotically) stable) equilibrium.

1.3.3 Liapunov functions

Let (X,d) be a metric space, p : X — X7 be a dynamic process and
X* C X. A Liapunov function for p and X* is a function V : Q@ — R,
where €2 is a strict neighborhood of X*, satisfying:

1. V is continuous, i.e., d(x, z') — 0 implies |V(z) — V(2')| — 0.

4 Chapter 1

2. V has its unique minimum within Q at X*.
3. Ve e Q Ve, V(p(x)(t)) < V().

The following two theorems are similar to those in [10].

THEOREM 1 X* C X is a stable equilibrium of a dynamic process p iff
there exists a Liapunov function V for p and X*.

Proof: The if part: Let V' be a Liapunov function for p and X*. First of
all, X* is an equilibrium since V' takes the unique minimum at X*. Sup-
pose € is the domain of V. Given any ¢, let ¢ < e such that NEI(X*) C
Q, and 7y be the minimum over the boundary of N¢(X*). 7 > V(X*)
since X * is the unique minimum. Because V is continuous, there exists a
6-neighborhood N?(X*) such that Yz € N?(X*), V(z) < . Therefore,
$p(NP(X*)) C N (X") C N<(X7).

The only if part: If X* is a stable equilibrium of p, let V(z) =
SUPgreg,(2)1d(2', X™)}. We have (1) V(X™) = 0 since X* is an equi-
librium, (2) V(p(z)(t)) < V(x) since ¢,(p(x)(t)) C ép(z), and (3) V is
continuous since X* is stable. Therefore, V' is a Liapunov function for
pand X*. O

THEOREM 2 X* C X is an asymptotically stable equilibrium of a dy-
namic process p iff there exists a Liapunov function V : Q@ — R for X*
and p, such that Yo € Q,limy_. o V(p(2)(t)) = V(X™). Furthermore, if
Q = X, X* is an asymptotically stable equilibrium in the large.

Proof: Since X* is the unique minimum in Q, p() approaches X* V& €
Q. Given V defined as the same as that in the previous proof, if X* is
an asymptotically stable equilibrium, V(p(z)(?)) approaches V(X*). O

1.4 Constraint Nets and Constraint Solvers

In this section, we first introduce Constraint Nets, a model for dynamic
systems, then examine the relationship between constraint nets and con-
straint satisfaction via constraint solvers.

1.4.1 Constraint Nets

A dynamic system can be modeled by a constraint net. Intuitively, a
constraint net consists of a finite set of locations, a finite set of trans-
ductions, each with a finite set of input ports and an output port, and
a finite set of connections between locations and ports of transductions.

Constraint Programming in Constraint Nets 5

A location can be regarded as a wire, a channel, a variable, or a
memory cell, whose value may change over time.

A transduction is a mapping from input traces to output traces which
is causal, viz., the output value at any time is determined by the in-
put values up to that time. Transductions are mathematical models of
transformational processes. For example, a transliteration fr is a trans-
duction whose output value at any time ¢ € 7 is the function f of the
input value at that time only. Intuitively, a transliteration is a trans-
formational process without memory or internal state, for example, a
combinational circuit. We use f to denote the transliteration fr if no
ambiguity arises. On the other hand, unit delays and temporal inte-
grations are transductions modeling sequential processes. A unit delay
8(vg) is a transduction defined mainly for discrete time structures, such
that the output value at initial time 0 is vy and the rest of the output
values are the input values at the previous time. A unit delay acts as
a unit memory in discrete time dynamic systems. Corresponding to a
unit delay, a temporal integration is a typical transduction in continu-
ous time. We use [(vg) to denote the temporal integration with initial
output value vg.

A connection links a location with a port of a transduction. The set
of connections has the following restrictions: (1) there is at most one
output port connected to each location, (2) each port of a transduction
connects to a unique location and (3) no location is isolated.

A location [is an input location of a transduction F' iff [connects to an
input port of F'; [is the output location of F' iff [connects to the output
port of F'. A location is an input if it is not connected to the output
location of any transduction; it is otherwise an oufput. A constraint net
is open if there is an input; it is otherwise closed.

The graphical representation of a constraint net is a bipartite directed
graph where locations are depicted by circles, transductions by boxes and
connections by arcs, each from a port of a transduction to a location or
vice versa.

Semantically, a transduction F' denotes an equation Iy = F'({1,---, 1)
where [is the output location of F' and (l1,---,l,) is the tuple of input
locations of F'. A constraint net C'N denotes a set of equations, o' =
ﬁ(f,é’), each corresponds to a transduction in CN. The semantics of
CN is a “solution” of the set of equations [24].

6 Chapter 1

In general, constraint nets can model hybrid dynamic systems, with
components operating on different time structures possibly triggered by
events. In this paper, we focus only on two types of constraint net:
discrete transition systems and continuous integration systems, corre-
sponding respectively to two different types of constraint solver.

1.4.2 Constraint solvers

We view a constraint as a possibly implicit relation on a set of vari-
ables. The constraint satisfaction problem is defined as follows. Given
a set of variables V' with the associated domains {D, },ev and a set of
constraints {Cj};es each on a subset of the variables, i.e., C; C xv, D,
where V; C V, find an explicit relation tuple z € xy D, that satisfies
all the given constraints, i.e., for all j € J, x|y, € Cj where z|s denotes
the restriction of z onto S C V. If C'= {C}}jes is a set of constraints,
we use sol(C) to denote the set of solutions, called the solution set.

A constraint solver for a constraint satisfaction problem is a closed
constraint net whose semantics is a dynamic process approaching the
solution set of the constraints. Formally, a closed constraint net C'SV isa
constraint solver for a constraint satisfaction problem C on domain X =
xv D, iff (1) the semantics of CSY is a dynamic process [CSV] : X —
X7 and (2) sol(C) is an asymptotically stable equilibrium of [CSY].
CSY solves C globally iff sol(C) an asymptotically stable equilibrium of
[CSY] in the large.

LEMMA 2 If a constraint solver CSV solves a set of constraints C' on
variables V globally, every equilibrium of [C'SV] is a solution of C.

We discuss here two basic types of constraint solver: state transition
systems for discrete methods and state integration systems for continu-
ous methods.

A state transition system is a pair (S, f) where S is a set of states and
f: S — Sis a state transition function. A state transition system can
be represented by a constraint net with a transliteration f and a unit
delay 6(sg) where sg € S is an initial state (Figure 1.1). The semantics
of this net is a dynamic process p : S — SV with p(sg) as an infinite
sequence (so, f(so), -, f*(s0), - -}. A state s* € S is an equilibrium of
(S, 1) iff 5 = £(5°).

Constraint Programming in Constraint Nets 7

@@7

Figure 1.1
A constraint net representing (S, f)

LEMMA 3 If V : Q — R is a Liapunov function for (S, f) and S* =
{s*|s* = f(s*)} C Q, then V(f(z)) < V(z),Ve € Q. In addition, if f is
continuous and V(f(z)) < V(z), Ve ¢ S*, S* is an asymptotically stable
equilibrium.

Proof: If lim, .o V(f*(s)) = € > V(5*), let X = {s|V(s) < €} D S,
f™(s) approaches X. If f is continuous, however, f"(s) approaches
f(X) C X and lim, .o, V(f"(8)) < ¢, contradiction. O

For continuous time structures and domains, integration is used to
replace the unit delay. A state integration system is a differential equa-
tion § = f(s) that can be represented by a closed constraint net with
a transliteration f and an integration f(so) where sg 1s an initial state
(Figure 1.2). The semantics of this net is a dynamic process p : S — SRY
with p(sg) as the solution of s = f(s) and s(0) = sg. A state s* € S is

ﬂ%@»f o @T

A constraint net representing s = f(s)

an equilibrium of s = f(s) iff f(s*) = 0.

LEMMA 4 A set S* = {s*|f(s*) = 0} C Q is an asymptotically stable
equilibrium of the state integration system § = f(s) if f is continuous
at S* and S* is the unique minimum of — [f(s)ds in Q. If @ = S, S*

is an asymptotically stable equilibrium in the large.

Proof: Let V(s) = — [f(s)ds be defined on a neighborhood of S*. V
is a Liapunov function for § = f(s) and S* since V(s) = —f?(s) < 0.
Furthermore, V(s) < 0,V¥s ¢ S* since f(s) #0. O

8 Chapter 1

1.5 Dynamic Properties of Constraint Methods

In this section, we examine some typical constraint methods and their
dynamic properties. In particular, we discuss two types of constraint
satisfaction problem, namely, global consistency and optimization, for
four classes of relation: relations on finite domains, and linear, con-
vex and nonlinear relations in n-dimensional Euclidean space (R™,d,),
where dp(z,y) = |z —y| = V22 (2 — yi)?.

Global consistency corresponds to solving hard constraints and uncon-
strained optimization corresponds to solving soft constraints. A problem
of the first kind can be translated into one of the second by introducing
an energy function representing the degree of global consistency. On the
other hand, constrained optimization can be considered as a combination
of the two, which corresponds to solving the soft constraints within the
solution set of the hard constraints.

There are two types of constraint method, discrete relaxation, which
can be implemented as state transition systems, and differential opti-
mization, which can be implemented as state integration systems. In
the rest of this section, we demonstrate the use of both types of con-
straint method.

1.5.1 Global consistency

The problem of global consistency is to find a solution tuple which satis-
fies all the given constraints. Here we first discuss a projection method
(PM) for solving convex constraints, and then study a method for solving
global consistency of finite domain constraints (FM).

Projection method The projection method [8] can be used for solv-
ing convex constraints. A function f : R" — R is convez iff for any
A€ (0,1), fAz+ (1 = Ny) < Af(x) + (1 — A)f(y); it is strictly con-
ver iff the inequality is strict. A strictly convex function has a unique
minimal point. Linear functions are convex, but not strictly convex. A
quadratic function 27 Mz + ¢« is convex if M is semi-positive definite;
it is strictly convex if M is positive definite. A set R CR" is convez iff
for any A € (0,1),z,y € R implies Az + (1 — A)y € R. If g is a convex
function, {z|g(z) < 0} is a convex set.

A projection of a point x to a set R in a metric space (X, d) is a
point Pr(z) € R, such that d(z, Pr(z)) = d(z, R). Projections in the

Constraint Programming in Constraint Nets 9

n-dimensional Euclidean space (R”,d,) share the following properties.

LEMMA 5 (From [8]) Let R C R™ be closed and convex. The projection
Pg(z) of z to R exists and is unique for every z, and (z — Pr(z))? (y —
Pr(z)) <0 for any y € R.

Suppose we are given a system of convex and closed sets, {X; };er, each
representing a constraint. The problem is to solve {X;};cr, or to find
NrX;. Let P(z) = Px,(z) be a projection of z to a least satisfied set X7,
ie., d(z, X;) = maxy d(x, X;). The projection method [8] for this problem
defines a state transition system (R”, f) where f(z) =« + A(P(z) —)
for 0 < A< 2.

Let PM be a constraint net representing the projection method. The
following theorem is derived from [8].

THEOREM 3 PM solves {X;};cs globally if all the X;’s are convex.

Proof: Let X* = N;X; be the solution set of the problem. First of all,
it is easy to see that if #* € X* is a solution, then z* = f(z*), i.e., z* is
an equilibrium. Moreover, we can prove that |f(z) — «*| < |o — «*] for
any ¢ and z* € X* as follows.

(@) =" = |z + A(P(2) — 2) — 2"

=z —z*|? + A P(z) — 2> + 2X(z — 2") (P(z) — z)

= o — 2" 2+ (A2 = 2))|P(2) — z|* + 2A(P(2) —)T (P(z) — &)
<le—2** = A2 - N)|P(z) —z|* according to Lemma 5

< |z —z*|* since 0 < A< 2.

Therefore, d(f(z), X*) < d(x, X*). Thus, X* is stable.

Furthermore, |f*(z)—z*|is nonincreasing and bounded below. There-
fore, |f*(z) — z*| has a limit and max; d(f*(z), X;) approaches 0. Ac-
cording to [8], limg— o, d(f*(z), X*) = 0, since R™ is finite dimensional.
Thus, X* is an asymptotically stable equilibrium of PM in the large,
i.e., PM solves the problem globally. O

The projection method can be used to solve a set of inequality con-
straints, i.e., X; = {#]g;(z) < 0}, where each g; is a convex function.

10 Chapter 1

Linear functions are convex. Therefore, the projection method can be
applied to a set of linear inequalities Az < b, where @ = (x1, -, 2,) €
R™. Let A; be the ith row of A. The projection of a point z to a half
space A;z — b; <0 is defined as

PZ'(JJ):{]: if Aje—b; <0

r — CAZT otherwise

where ¢ = (A;z — b;)/|AT|2. This reduces to the method described in
[1]. Without any modification, this method can be also applied to a set
of linear equalities, by simply replacing each linear equality g;(z) = 0
with two linear inequalities: g;() < 0 and —g;(2z) < 0.

There are various ways to modify this method for faster convergence.
For instance, a simultaneous projection method is given in [3], in which
f(z) = 2+ AZjeyw;(Pj(x) — «) where J C I is an index set of violated
constraints, w; > 0 and Y;cyw; = 1. A similar method is given in
[21] in which f(z) = z + A(Ps(z) —) where S = {z|Zjcw;g;(z) <
0}, with the same assumption about J and wj. Furthermore, for a
large set of inequalities, the problem can be decomposed into a set of K
subproblems with f; corresponding to the transition function of the kth
subproblem. The whole problem can be solved by combining the results

Of{fla'”afK}“

Finite constraint satisfaction Many problems can be formalized
as finite constraint satisfaction problems (FCSPs), which can be repre-
sented by constraint networks [23]. Formally, a constraint network C' is
a quadruple (V, dom, A, con) where

* V is a set of variables, {vy,ve, -+, un},

* associated with each variable v; is a finite domain d; = dom(v;),

* A is a set of arcs, {aj,as, -, a,},

* associated with each arc a; is a constraint con(a;) = r;(R;) where
R; C V is a relation scheme and r; is a set of relation tuples on R;.

The FCSP problem is to find one or all relation tuples in sol(C) =
ry XX,

An FCSP can be solved using various methods [4, 6, 11, 12, 14],
one of which is to find the minimal network [14]. Let Scheme(C) =
{R1, -, Ry} be the scheme of a constraint network C'. The minimal net-
work of a constraint network C' is a network C*, with sol(C') = sol(C*),
Scheme(C) = Scheme(C*), and r} = IIg,(sol(C*)) where Ilg, is a pro-

Constraint Programming in Constraint Nets 11

jection operator. Here we present a relaxation method (FM) which finds
the minimal network of a constraint network with an acyclic scheme.
Such methods have been studied by many researchers, for instance,
[7, 17, 23]. We examine the properties of the method within the frame-
work of dynamic processes.

Let C be the set of constraint networks with the same scheme and
solutions. We define a state transition system (C, f) where f = {fi}a,ca
with fz(r) = ﬂ{ﬂR,ﬂRJ‘;ﬁ@} HR,(TZ' X T’J)

Let FM be a constraint net representing a state transition system

(€. 5.
THEOREM 4 FM solves the minimal network problem globally for C if
the scheme of C is acyclic.

Proof: It is clear that a minimal network C* is an equilibrium of the
state transition system. Now let us define a metric on the set C. Given
a relation scheme R, the distance between two sets of relation tuples
r1,72 on the same relation scheme R can be defined as dg(ri,r2) =
|(r1 — r2) U (r2 — r1)| where |r| denotes the number of relation tuples.
The distance between two constraint networks in C can be defined as
d(Cy,Cq) = \/EScheme(C)d%(rl;TZ)- Let us define a function L on C

as L(C) = \/Yscheme(c)|r|?. 1t is easy to check that L is a Liapunov
function for (C, f) and C*.

If the scheme of C is acyclic, an equilibrium implies a minimal network
[23], i.e., if C # C*, L(f(C)) < L(C). Furthermore, f is continuous
since the metric space on C is discrete. According to Lemma 3, C* is an
asymptotically stable equilibrium.O

1.5.2 Unconstrained optimization

The problem of unconstrained optimization is to minimize a function
€ :R"* — R. Global consistency can be solved via unconstrained opti-
mization. For instance, given a set of equations g;(z) = 0,i = 1---n,
let & () = Yt w;g2(x) where w; > 0 and Xf_,w; = 1. If a constraint
solver C'S solves min&,(z), C'S solves g(x) = 0. Inequality constraints
can be transformed into equality constraints. There are two approaches.
Let g;(2) < 0 be an inequality constraint: the equivalent equality con-
straint is (i) max(0, g;(z)) = 0 or (ii) g;(z)+2? = 0 where z is introduced
as an extra variable. Here we first discuss two methods for this prob-
lem: the gradient method (GM) and Newton’s method (NM), and then

12 Chapter 1

study the schema model (SM) for solving finite constraint satisfaction
problems by minimizing an energy function & : [0, 1]* — R.

Gradient method The gradient method [16] is based on the gradient
descent algorithm, where state variables slide downhill in the direction
opposed to the gradient. Formally, if the function to be minimized is
E(x) where ¢ = (21, -,), then at any point, the vector that points in
the direction of maximum increase of £ is the gradient of £. Therefore,
the following gradient descent equations model the gradient method:

ki > 0. (15.1)

Z = _kl Y

Let £ : R™ — R be a function. Let GM be a constraint net repre-
senting the gradient descent equations (1.5.1). The following theorem
specifies conditions under which GM solves the problem of local mini-
mization of £.

THEOREM 5 Let X* be the set of local minima of £&. GM solves the
problem if % is continuous at X*. GM solves the problem globally if,
in addition, £ is convex.

Proof: According to Lemma 4, a local minimum is an asymptotically
stable equilibrium. A set of local minimais also an asymptotically stable
equilibrium. If £ is convex, X* is the unique minimal set, which is an
attractor in the large. O

Newton’s method Newton’s method [19] minimizes a second-order

approximation of the given function, at each iterative step. Let AE = g—g
xT

and J be the Jacobian of AE. At each step with current point z(*)
Newton’s method minimizes the function:

Ealx) = (@) + AET (™)) (& — 2Py + %(a; — 2N J (2 (2 — £8)),

Let 86“’;; = 0, we have:
AE®)) + J(2®))(z — 2y = 0.
The solution of the above equation becomes the next point, i.e.,

bt = g(k) _ J_l(x(k))AS.

Constraint Programming in Constraint Nets 13

Newton’s method defines a state transition system (R, f) where f(z) =
z— J Y 2)AE(2).

Let NM be a constraint net representing Newton’s method. The fol-
lowing theorem specifies conditions under which NM solves the problem
of local minimization of a function £.

THEOREM 6 Let X* € R™ be the set of local minima of £&. NM solves
the problem if |J(z*)| # 0, V&* € X*, i.e., & is strictly convex at each
local minimal point. NM solves the problem globally if, in addition, £
is convex.

Proof: First, we prove that Va* € X*, 2* = f(2*) and |J(z*)| # 0 imply
that z* is asymptotically stable. Let R be the Jacobian of f. It is easy
to check that |R(z*)| = 0. There exists a neighborhood of z*, N¢(z*),
for any ¢ € N€(«*), |f(z) — f(«*)| < M|z —2*| for 0 < A < 1. Therefore,
limg— oo | f*(z) —2*| = 0 and z* is asymptotically stable. Therefore, X*
is an asymptotically stable equilibrium. If £ is convex, z* is the unique
minimal point, which is an attractor in the large. O

Here we assume that the Jacobian and its inverse are obtained off-
line. Newton’s method can also be used to solve a nonlinear equation
g(z) = 0 by replacing AE with g.

Schema model The schema model has been used for finite constraint
satisfaction in the PDP framework [18]. Basically, there is a set of units
{;}, each can be on or off; constraints between units are represented by
weights {w;;} on connections. An energy function is defined typically
as a quadratic function in the following form:

E(x) = —(Sijwijzizj + Bibjai) = —(2" We + b)

where #; € [0, 1] indicates the activation value and b; specifies the bias
for unit ¢. Value w;; represents the constraint between two units ¢ and
Jt w;; is positive if units ¢ and j support each other, it is negative if the
units are against each other and it is zero if the units have no effect on
each other. The problem is to minimize £ within the closed set [0, 1]™.

There are various methods for solving this problem. The schema
model [18] provides the simplest discrete relaxation method. Let n;(z) =
g—i = —Yw;;x; — b;. The schema model defines a state transition
system ([0, 1]?, f) where f = (f1, -, fa) and f; is defined as follows:
fi(z) = &y — ng(2)az; if ny(2) > 0 and fi(z) = 2; — ni(2)(1 — x;) other-
wise. In other words, f;(z) = (1 — |n;(x)|)z; — min(0, n;(z)).

14 Chapter 1

Let SM be a constraint net representing the schema model.

THEOREM 7 SM solves the problem of minimizing & if |n;(z)| < 1 for
any ¢ and x.

Proof: Let X* be the set of minima of £. Let z(**1) denote f(z(*)).
First, because |ni(z)] < 1, 2*) € [0,1]* implies z*+1) € [0, 1]?. There-
fore, f is well-defined. Second, for each minimum z* of £, and for any
i, either (1) ny(z*) = 0 or (2) ni(z*) > 0 and & = 0 or (3) ni(z*) <0
and 27 = 1. Therefore, z* is an equilibrium. Now we prove that z* is
stable. Let Q be an e-neighborhood of z* such that V& € Q and for any
i: if ny(z*) # 0, then n;(z) and n;(z*) have the same sign, otherwise
if nj(x) > 0, then ; > 2} and if n;(z) < 0, then z; < z}. Such a
neighborhood exists because n; is continuous. Considering |f;(z) — z}|,
there are four cases.

1. ng(z*) > 0: In this case, zf = 0 and |fi(z) — zf| = |fi(2)] =
1= ni(z)| X || < |2s — 2.

2. ni(2*) < 0: In this case, 7 = 1 and |fi(z) —)| = |fi(z) = 1] =
L+ ni(2)] x |z — 1] < [z — 27].

3. ni(2z*) = 0 and ny(z) > 0: |fi(z) — 2f| = |(1 — ng(2))z; — 2f| =
|z — @] —ni(x)zi| < [z — 7).

4. ni(z*) = 0and n;(2) < 0: |fi(x)—z]| = |(14n;(2))zi—ni(2)—2]| =
|z; — 2] — ni(2)(1 — a;)| < | — x|

Therefore, Vo € Q, |fi(2) — 2f| < |z; — 2f| and |f(z) —2*| < | — z¥|.
Therefore, * is stable. Thus, X* is a stable equilibrium.

Furthermore, let Xj C X™* be a set which takes a unique minimum in
its neighborhood. X is convex and closed since it is an intersection of
a set of linear equations on or within the boundary. Let © be a strict
neighborhood of X{. If £ € Q — X[, let * be the projection of z on Xj.
There exists x;, |fi(z) — zf| < |x; — 2], so |f(z) — «*| < |¢ — z*| and
d(f(z), X3) < d(z,X§). Since f is continuous, according to Lemma 3
(with V(z) = d(z, X*)), X is asymptotically stable, so is X*. O

1.5.3 Constrained optimization

Unconstrained optimization can be used to solve soft constraints as well
as hard constraints. Constrained optimization is a problem of solving
(soft) constraints subject to the satisfaction of a set of hard constraints,
or solving a constraint satisfaction problem within a subspace charac-
terized by the set of hard constraints.

Constraint Programming in Constraint Nets 15

The prototypical constrained optimization problem can be stated as
[16]: locally minimize f(x), subject to g(z) = 0, where g(x) = 0 is a set
of equations describing a manifold of the state space. There are various
methods for solving the constrained optimization problem. Here we
focus on methods derived from the gradient method. During constrained
optimization, the state z should be attracted to the manifold g(z) = 0
and slide along the manifold until it reaches the locally smallest value
of f(z) on g(z) = 0.

Different methods arise from the design of the energy function & for
minimizing f(z) under constraints gy(z) = 0 for £ = 0---m. Let &
be the energy function generated from the constraints, we have £(z) =
f(@) + Exa).

* Penalty Methods: The penalty method constructs an energy term
that penalizes violations of the constraints, i.e., £&(z) = ¥7 crgi ().

* Lagrange Multipliers: The Lagrange multiplier method introduces
a Lagrange multiplier A for each constraint and A varies as long as its
constraint is not satisfied, i.e., £.(2) = L yArgr(x). In addition, there
is a set of differential equations for A, i.e., Ay = gr(2).

The advantage of the penalty method is its simplicity; however, the
constrained optimization problem may not be solved with finite ¢;. The
advantage of the Lagrange multiplier method is its ability to satisfy the
hard constraints.

Let LM be the constraint net representing the Lagrange multiplier
method. The following theorem specifies a condition under which LM
solves the constrained optimization problem globally.

THEOREM 8 Let A be a matrix where A;; = % + X7 A a?jg’; - If
10T 10T 5

A 1is positive definite, LM solves the constrained optimization problem
min f(z) subject to gi(x) = 0 globally.

Proof: Let
1 ., 1 9
V(z) = 5221‘2 + §Ekgk(m).

It has been shown in [16] that
V=%, @Ayt

V is a Liapunov function for LM and the solution set. O

16 Chapter 1

1.6 Summary

We have presented here a framework for constraint satisfaction. Fig-
ure 1.3 illustrates the overall approach. First, we view constraints as

modeled by
Dynamic Process ——>» Constraint Net
isa T l speciaized to
Constraint Satisfaction models

(Constraint Method + Constraint) Constraint Solver

Figure 1.3
A framework for constraint satisfaction

relations and constraint satisfaction as a dynamic process of approach-
ing the solution set of the constraints. Then, we explore the relationship
between constraint satisfaction and constraint nets through constraint
solvers.

Within this framework, constraint programming is seen as the creation
of a constraint solver that solves the set of constraints. A constraint
solver “solves” a set of constraints in the following sense (Figure 1.4).
Given a constraint satisfaction problem C', and a discrete or continuous
(time) constraint method, a constraint solver C'S is generated. Starting
from any initial state in the attraction basin of sol(C'), C'S will approach
sol(C') asymptotically. In this framework, constraint programming is
off-line and constraint satisfaction is on-line.

We have also studied various continuous and discrete time constraint
methods, which can be realized by state integration systems and state
transition systems, respectively.

This framework for constraint satisfaction has two advantages. First,
the definition of constraint solvers relaxes the condition of solving con-
straints from finite computation to asymptotic stability. For example,
many relaxation methods with the local convergence property are in
fact “solvers” under this definition and many problems become “semi-
computable” in this sense. This concept is very useful in practice and

Constraint Programming in Constraint Nets 17

Constraint Method

Build
Constraint Solver

Off-line

. Run
On-line Constraint Solver ‘7
Solution
Stable State
Figure 1.4

Constraint solvers and constraint satisfaction

can be used for generalizing Turing computability from discrete domains
to continuous domains. Second, dynamic constraints can be solved in
this framework as well. The importance of this characteristic is demon-
strated here using an application to control synthesis.

1.7 Application to Control Synthesis

One of the significant applications of constraint solvers is the design
of robot control systems [15]. A robotic system is a dynamic system
consisting of a plant, a controller and an environment (Figure 1.5). The
roles of these three subsystems can be characterized as follows:

* Plant: a plant is a set of entities which must be controlled to achieve
certain requirements. For example, a robot arm with multiple joints, a
car with throttle and steering, an airplane or a nuclear power plant can
be considered as the plant of a robotic system.

* Controller: a controller is a set of sensors and actuators, which, to-
gether with software/hardware computational systems, senses the states

18 Chapter 1

CONTROLLER

ENVIRONMENT

Figure 1.5
A robotic system

of the plant (X) and the environment (Y), and computes desired inputs
(U) to actuate the plant. For example, an analog circuit, a program in
a digital computer, various sensors and actuators can be considered as
parts of the controller of a robotic system.

* Environment: an environment is a set of entities beyond the (direct)
control of the controller, with which the plant may interact. For exam-
ple, obstacles to be avoided, objects to be reached, and rough terrain to
be traversed can be considered as the environment of a robotic system.

In most cases, desired goals, safety requirements and physical restric-
tions of a robotic system can be specified by a set of constraints on
variables U UX UY (Figure 1.5). The controller is then synthesized to
regulate the system to satisfy the set of constraints.

A controller is constraint-based iff the integration of the controller
and the plant solves the set of constraints, in response to the state of
the environment. Consider the design of a tracking system S which
chases a target T'. Let z be the position of S and y be the position of
T the constraint to be satisfied is # = y. Suppose the plant follows the
dynamics u = & where u is the control input. One possible design for
the controller uses the following feedback control law v = k(y—x), k > 0
where the distance between the target and the current position y—« can
be sensed. This controller is constraint-based since & = k(y —) solves
x = y for any parameter y.

The constraint techniques we have introduced can be applied to con-
trol synthesis and behavior verification for robotic systems [22].

Constraint Programming in Constraint Nets 19

Acknowledgements We wish to thank Uri Ascher, Peter Lawrence,
Dinesh Pai, Nick Pippenger and Runping Qi for valuable discussions
and suggestions. This research was supported by the Natural Sciences
and Engineering Research Council, the Canadian Institute for Advanced
Research and the Institute for Robotics and Intelligent Systems.

Bibliography

(1]
(2]

(18]

(19]

S. Agmon. The relaxation method for linear inequalities. Canadian Journal of
Mathematics, 6:382—-392, 1954.

A. Aiba, K. Sakai, Y. Sato, and D. J. Hawley. Constraint logic programming
language CAL. In Proceedings of the International Conference on Fifth Gen-
eration Computer Systems, pages 263 —276, 1988.

Y. Censor and T. Elfving. New method for linear inequalities. Linear Algebra
and Its Applications, 42:199-211, 1982.

R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia of
Artificial Intelligence, pages 285 — 293. Wiley, N.Y., 1992.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In Proceed-
ings of the International Conference on Fifth Generation Computer Systems,
pages 693 — 702, 1988.

E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems.
In Proceeding of AAAI-90, 1990.

E. C. Freuder. Completable representations of constraint satisfaction problems.
In KR-91, pages 186 — 195, 1991.

L. G. Gubin, B. T. Polyak, and E. V. Raik. The method of projections for
finding the common point of convex sets. U.5.5.R. Computational Mathematics
and Mathematical Physics, pages 1-24, 1967.

J. Jaffar and J. L. Lassez. Constraint logic programming. In ACM Principles
of Programming Languages, pages 111 — 119, 1987.

D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models and
Applications. John Wiley & Sons, 1979.

A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor, Fncyclo-
pedia of Artificial Intelligence, pages 276 — 285. Wiley, N.Y., 1992.

A. K. Mackworth. The logic of constraint satisfaction. Artificial Intelligence,
58:3-20, 1992.

M. D. Mesarovic and Y. Takahara. General Systems Theory: Mathematical
Foundations. Academic Press, 1975.

U. Montanari. Networks of constraints: Fundamental properties and applica-
tions to picture processing. Information Science, 7:95-132, 1974.

D. K. Pai. Least constraint: A framework for the control of complex mechanical
systems. In Proceedings of American Control Conference, pages 426 — 432,
Boston, 1991.

J. Platt. Constraint methods for neural networks and computer graphics. Tech-
nical Report Caltech-CS-TR-89-07, Department of Computer Science, Califor-
nia Institute of Technology, 1989.

F. Rossi and U. Montanari. Exact solution in linear time of networks of con-
straints using perfect relaxation. In Proceedings First Int. Principles of Know!l-
edge Representation and Reasoning, Toronto, Ontario, Canada, pages 394-399,
May 1989.

D. E. Rumelhart and J. L. McClelland, editors. Parallel Distributed Processing
— FEzploration in the Microstructure of Cognition. MIT Press, 1986.

J. T. Sandfur. Discrete Dynamical Systems: Theory and Applications. Claren-
don Press, 1990.

22

(20]

(21]
(22]

(23]

(24]

(23]

Bibliography

V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of con-
current constraint programming. Technical Report SSL-90-86, Palo Alto Re-
search Center, 1990.

K. Yang and K. G. Murty. New iterative methods for linear inequalities. Un-
published.

Y. Zhang. A foundation for the design and analysis of robotic systems and
behaviors, 1994. PhD thesis, forthcoming.

Y. Zhang and A. K. Mackworth. Parallel and distributed constraint satisfac-
tion: Complexity, algorithms and experiments. In Laveen N. Kanal, editor,
Parallel Processing for Artificial Intelligence. Elsevier/North Holland, 1993.

Y. Zhang and A. K. Mackworth. Constraint Nets: A semantic model for hybrid
dynamic systems, 1994. Accepted for TCS Special Issue on Hybrid Systems.

Y. Zhang and A. K. Mackworth. Will the robot do the right thing? In Proc.
Artificial Intelligence 94, pages 255 — 262, Banff, Alberta, May 1994.

