A Smart Buffer for Tracking Using Motion Data

James J. Little and Johnny Kam*
Department of Computer Science

University of British Columbia
Vancouver, BC, Canada V6T 172

Abstract

Responsive vision is vision responding to the en-
vironment. The characteristics of a responsive
system are: active response in dynamic environ-
ment, real time computation, and using multiple
modalities in a multi-purpose system. The Vision
Engine[?] is a general purpose for general vision
tasks. Farly vision processing, e.g., optical flow
and stereo is implemented in near real-time using
the Datacube, producing dense displacement fields
at near video rates, which are then transferred to a
Transputer subsystem, where data dependent pro-
cessing occurs in parallel on subimages.

We use the Vision Fngine for complex process-
ing under real-time constraint, the differences be-
tween the processing rates in a robotic system re-
quire smart buffers, objects that can buffer data
between perception, reasoning and action pro-
Smart buffers offer a simple interface
between asynchronous processing tasks and sim-
plify the structure of multiprocessor vision sys-
tems. We describe a simple motion tracker that
uses a smart buffer to mediate between early and
middle vision processing. The smart buffer per-
mits the system to sense during action by letting
the sensing component accumulate visual data in
the course of action.

CESSES.

*The authors may be contacted at little@cs.ubc.ca.
This research was supported by a grant from the Natu-
ral Sciences and Engineering Research Council of Canada
and the Networks of Centres of Excellence Institute for
Robotics and Intelligent Systems, Project A-1.

1 Introduction

Responsive vision is vision responding to the en-
vironment: a response is “an answer, an action,
stimulus, movement, or change elicited by a stim-
ulus or influence”, responsive is “reacting readily
or favorably”. The characteristics of our respon-
sive system are: active response in dynamic envi-
ronment, real time computation, and using mul-
tiple modalities in a multi-purpose system. A vi-
sion system is termed “active” when the system
uses changes in its viewing parameters to improve
its results. How the parameters, such as view-
point, change can be directly controlled by the
nature of the task, in which case the critical issue
is how to change the parameters, e.g., [?, ?], or
the parameters may be changing independently,
as in sensing from a moving vehicle, in which case
the question is how to use additional information
to add robustness or reduce ambiguity, e.g., [?].
Responsive adds to the goals of active vision the
goal of real-time action.

The goal of real-time performance is manda-
tory for any responsive vision system, but the goal
of performance conflicts with the computational
intensity of most vision tasks. The necessity of
quick response is driven by interaction with a dy-
namic world. The luxury of long computation
times vanishes when confronted with the urgency
of the physical world. Vision systems need tasks
to keep them honest and nothing is more honest
than real-time deadlines, aptly named.

Usually vision systems become trivial to re-
spond to real time constraints—if there is lit-
tle time to do something, do very little. Many
robotic systems employ specialized sensors de-

signed for particular tasks so that the connection
between sensor and action can be direct and fast.
[?]. But of course this is not vision.

Parallel processing is one way out of the
dilemma, and much recent work has been dedi-
cated to discovering how to utilize parallel proces-
sors for general vision algorithms [?, ?]. Likewise
many specialized processors have been designed,
from analog chips [?] to special-purpose digi-
tal designs[?], such as reconfigurable meshes[?].
These machines are as yet unavailable for com-
mon comsumption or, if available, are quite spe-
cialized and solve only the very early stages of vi-
sion processing. But the machines on which com-
plex vision algorithms have been implemented are
typically large and expensive. Robotic tasks de-
mand small and inexpensive machines. So a vi-
sion module must operate in a physical context
where there are not only physical constraints, but
also economic constraints. A vision module must
be part of a system that is configured in a realistic
fashion.

To solve the problems of implementing non-
trivial vision processing on realistic machines, a
designer must confront the realities of multirate
processing: due to technology mismatch between
early processing engines and more limited inter-
mediate and high level processing capability, as
well as limited communication bandwidth, the
rate at which components in the system produce
and consume data vary enormously.

1.1 The Vision Engine

A short discussion of the structure of the UBC Vi-
sion Engine [?] will make the problem concrete.
The system is designed to be general purpose
and support computation for all levels of vision.
The levels of vision processing include early vi-
sion, which is spatially homogeneous, involving
dense processing, such as filtering; middle vision,
which is spatially distributed, regular but sparse,
such as line following, aggregation; and late vi-
sion, which is symbolic, such as matching[?].
Our system, the Vision Engine, consists of mul-
tiple architectures, each commonly available. The
first stage is pipelined, a Datacube MaxVideo200

TV
Monitor
Sun
SPARC 2
EEEEEN
EEEEEN
EEEEEE Datacube
VME EEENEN .
bus Maxtran MaxVideo
A network Node Image
of Transputers Processing
T-800 Hardware
Zebra Robotics
Eye-Head

Sony CCD cameras

Figure 1: Configuration of the LCI Robot Head
and Vision Engine

image processor with a Digicolor color image
digitizer. The second stage is a MIMD mul-
ticomputer: 20 T800 Transputers, each with
2MB memory, with programmable interconnec-
tions through a crossbar. These subsystems are
connected by a Maxtran board, a bidirectional
interface operating at video rates. The Max-
tran board maps data from the video bus of the
Datacube system into video RAM attached to
a Transputer. Figure ?? depicts the organiza-
tion of our system. The entire system resides
on the VME bus connected to a Sun SparcSta-
tion 2 host. The Transputer system communi-
cates directly with a specialized eye/head plat-
form with vergence, pan and tilt control, built by
Zebra Robotics. The Transputer system can also
control a CRS A-460 six degree-of-freedom robot
arm and a collection of independently controlled
mobile robot vehicles that play soccer [?].

1.2 Vision Operating Systems

The right model for the design of a vision sys-
tem can be taken from the design of operating
systems. A central problem in machine architec-

ture is mating the central processor, the fastest
processing element in the system, with a large
and slow memory hierarchy. To simplify pro-
gramming of the CPU, the machine presents the
abstraction that the memory is homogeneous and
comparable in speed to the CPU. Likewise, a vi-
sion system may be composed of many different
speeds of processors, but the critical central pro-
cessing should be programmed at an abstraction
level where the details of processing speeds in the
more peripheral elements can be ignored.

What must a vision operating system provide
to allow this abstraction? Temporal considera-
tions motivate this feature so that processing se-
quences of images or more precisely vision pro-
cessing in time. Unlike the memory hierarchy,
early vision processing can be quite rapid be-
cause its homogeneous nature lends itself to im-
plementation in simple processors such as mesh
and pipeline processors, and in specialized hard-
ware. Later processing stages are data depen-
dent and complex and must be implemented on
more general processors. It is necessary to create
a buffer between the high-speed process and the
slower stages to follow.

In our architecture, a smart buffer operates be-
tween the high-speed processing in early vision
and the more complex data-dependent processing
in the middle and late vision processes.

The smart buffer creates the illusion is that
the vision system continuously views the world
and that the robot can sample the visual world
at any time. In vision applications, data input is
not continuous, rather, it is quantized in time by
video frames. The delay between data input and
response is mediated by the intervening layers.
However, unlike a continuous system, it makes
sense to speak of the “last” result. When the
inter-frame interval is sufficiently small, the last
result may still be usable data.

We structure real-time vision systems as pro-
cesses that operate on data streams. Each process
typically operates on an image, then optionally
subdivide an image into smaller subimages and
sends the image(s) on to later processing stages.
The later stages can collect several image streams,

representing subimages of an original image, to
form aggregates. More simply, a stage can just
process the subimage and pass it on. Consider
processed images arriving in a vision system at a
later interpretation process. If the later process
cannot process arriving image in the interframe
period, data will be lost. A simple ring of buffers
would suffice if the processing time is sufficient
to process the data eventually; if not, the queue
of data stored in the buffers would grow indefi-
nitely. A smart buffer performs intermediate pro-
cessing on arriving data to connect two processes
at different speeds, providing current data with-
out burdening the receptor process with details
of how it is buffered.

There is some resemblance between the smart
buffer and some aspects of the “whiteboard” con-
cept supported by CODGER (COmmunications
Database with GEometric Reasoning) in CMU
NAVLAB [?, ?]. CODGER supports data flow
between parallel modules using a central black-
board database. Unlike CODGER, our smart
buffer essentially operates just to collect data.
Like CODGER, synchronization between the pro-
ducer and consumer is handled.

In order to be responsive, each component of
our vision system needs to be able to provide re-
sults to successor components, at any time. The
interface between successive layers must provide
for this ability, either by tailoring the algorithm
to this need, or by explicit storage of the results
of the previous step. Computations that can be
interrupted any time and provide approximate re-
sults have been termed “anytime”. The smart
buffer connects with the anytime concept by al-
lowing the later stages to get the data “anytime”.

2 An Example

The section describes an example that shows how
we can use these ideas to build a tracker that has
several processes occurring at different rates. We
have implemented a complex, integrated tracking
system to demonstrate our Vision Engine in ac-
tion, and to develop the core of a responsive vision
system, which needs dense results, but perhaps

not detailed results, to provide quick response to
changing situations. Coverage by the vision sys-
tem should be broad—one function of a vision
system is to monitor the environment for threats,
albeit as simple as an obstacle during locomotion.
Moreover, it should be able to support higher
functions like recognition and so should provide
general, not task-based results.

The tracker demonstrates how complex vision
processing can be applied in a vision task at near
real-time rates[?]. Therefore it uses motion pro-
cessing to select a target and tracks a moving
object, without any knowledge of the particular
object that it tracks. Moreover, it uses dense op-
tical flow data as its input and does not reduce
tracking, essentially, to following a white spot on
a black background, as do many systems.

2.1 Tracking Systems

Following the largest moving object is a popular
choice in motion tracking. A simple one camera
motion tracking system has been implemented to
pick the second largest moving area as target, as-
suming that the dominant motion to always be
the motion of the background [?]. Such system
is running on a 16K processor Connection Ma-
chine; the tracking algorithm is sequential, and it
is currently dealing with only one object. There
is no guarantee the background motion is always
the largest in magnitude or in size. Our system
takes the approach of attempting to cancel out
the background motion, or at least minimizing
its effect causing it to be the least significant mo-
tion, i.e., all moving objects should have flow val-
ues larger than background motion after cancel-
lation. Eventually, we will pick the target based
primarily on the magnitude of motion, instead of
the size of the region.

The approach taken in [?] is first to verge the
cameras and then to use a Zero-Disparity Filter
to pick out the target. Their system is quite ro-
bust and has good performance with a prediction
module. It is not clear, however, how such sys-
tem can deal with multiple objects, or to shift
attention. The approach taken at the University
of Rochester is to throw away, or filter out, ir-

relevant data or useless information as quickly as
possible. Our datacube program produces stereo
data, so it would be simple to implement ZDF
in our system; we have decided to attack a more
difficult problem, using motion data. Our current
system uses more output data, and therefore, has
a much better record of the motion paths of all
moving objects in view for further analyses.

An attentive control system [?] has been im-
plemented to track features. Shifts in focus of
attention are accomplished by using a saliency
map and by altering feedback gains applied to
the visual feedback paths in the position and ve-
locity control loops of the binocular camera sys-
tem. Since we do not have any knowledge about
any object we are dealing with, our system simply
uses motion field to drive attentional processing.

The KTH Head has 13 degrees of freedom and
15 different motors, simulating the essential de-
grees of freedom in mammalians [?].
rent work suggests the integration of low-level oc-
ular processes for fixation, and the use of coop-
erative vergence-focussing to assist the matching
process. Their current work realizes dynamic fix-
ation, i.e., changes in focus and vergence in real
time [?].

The Oxford group[?, ?] tracks foveated corner
clusters; the affine structure of a moving cluster
of corners (each tracked using an image-velocity
Kalman filter) determines the cluster point.

Their cur-

The absolute simplest tracking system is a
“bright-spot” tracker: one that chooses some fea-
ture, e.g., a white dot on a black background, on
a single image to follow, without even computing
for motion. Even simple differencing of two im-
ages grabbed at different time, creating a binary
image by thresholding the differences, and then
finding the centroid for tracking has been often
used.

The design of a tracker can also be simplified
by observing the world only when the robot head
is not moving, finding out what is to be tracked,
and then moving the robot head without paying
any attention to the changes in the world. The
“stop-and-look” mechanism excludes the idea of
imaging while moving, and the use of sequential

operations is extremely easy to implement and
manage. This system cannot continue to detect
changes to any object while data is being analysed
and the head is being moved to a new location.
The fact that fast saccades in the human visual
system do in fact suppress visual processing, up
to 200ms, shows that this mode of operation is
feasible. Given a sufficiently high-speed eye-head
platform, such as Yorick [?], one can operate on
pairs of frames, in a “stop-and-look” fashion.

2.2 Our Tracker

We have chosen to explore how to use dense op-
tical flow and stereo data for tracking. The pro-
cessing requires that pairs of frames have limited
image displacements. Our simple eye-head sys-
tem is slow compared to the speed that would be
required to move stop to stop in time to acquire
new information. In addition, we wish to be able
to track continuously during slow motion of an
object, observing all intermediate frames. The
deficencies of not being attentive to the world at
all time motivate our use of parallel processes so
that we can eventually handle multiple moving
objects. We continuously monitor the changes in
the world so that we know exactly what had hap-
pened while our reasoning processes were busy
working on something else. The effect of our de-
cisions, first, to gather visual data during head
movements, and, second, to identify the target
solely on the basis of the current largest moving
object, we must compensate for the apparent mo-
tion caused by the panning and tilting of the eye-
head itself. We do this by estimating the image
motion caused by camera motion and cancelling
the apparent motion in the accumulated optical
flow during a camera movement.
The tracker is composed of multiple stages:

e correlation motion and stereo on the Dat-
acube

e accumulation of optical flow over multiple
frames

e connected component labeling
e target selection
e control of the eye-head

The first two stages comprise the Perception com-
ponent of the tracking system; note that it is dis-
tributed over two different machines. The next
two stages form the Reasoning component, so
termed since the input of the Perception com-
ponent is analysed to determine the target to be
tracked. The final computational stage translates
the target location in image coordinates into con-
trols for the eye-head. Figure ?? depicts the data
flow in the system.

check 407 new data Datacube
Program

frame
(with optical flow and stereo disparity)

di spl acenent

Perception

connect ed
conponent s

reéquesting
connect ed
conponents. _ _

request jfg
conneefed
Sl o- -eoffponent s

conpl etion
signal',

Action

Eye-Head

DAT208 Encoder

21 0

Figure 2: Software Components and Data Flow

2.2.1 Perception

The input images are grabbed from the pair of
stereo cameras. The images are taken at 30
frames per second; we only use one field of the
frame. Each field is 512x240; our Sony cameras
average successive odd and even pairs so that we
do not have missing data in the vertical direc-
tion. We smooth with a Gaussian before subsam-

pling to 128x120 [?]. An output image of size
128x512 is returned with the following four sub-
frames, which are in order: optical flow, stereo
disparity, edges (zero-crossings of the Laplacian
of Gaussian), and Laplacian of Gaussian images
(see figure ?7?). Each of these subframes has a
default size of 128x120, which can be scaled to a
lower resolution of 64x60 if needed.

The common range of motion used is [-2, +2]
for vertical flow and [-3, +3] for horizontal flow,
and the range for stereo disparity to be consid-
ered is usually [-13, +13]. Optical flow (a 2D
vector) is encoded as a single scalar value at each
pixel. The simple sum of absolute values of dif-
ferences (SAD) correlation technique is used in
measuring optical flow and stereo disparity. A
7x7 correlation window is used in the computa-
tion. Only the correlation range specified in the
input data file will be considered. Optical flow
[?] takes (2d + 1)? passes through the images to
compute a maximum displacement of magnitude
d. Subsampling down from 480x512 has several
benefits: it reduces the number of pixels, making
the operations of the Datacube faster; it also re-
duces the maximum displacement so that there
are fewer iterations. The matching program de-
termines where the Laplacian of Gaussian image
contains insufficient information, and marks the
correlation result at that particular point. Opti-
cal flow and stereo are computed at 10Hz on the
Datacube Maxvideo200 board.

Optical [Stereo |Edges | V2@

Flow Disparity

Figure 3: The Four Subframes in the Output Im-
age of the Datacube Program

An essential component of our motion smart
buffer is a a process responsible solely for receiv-
ing the motion data stream. This frame grabbing
process, which we denote as the active monitor,
waits for data to arrive, and keeps track of the

data until it has been properly stored for later
retrieval by the reasoning system. This observing
or monitoring process is termed active since it is
an independent process which has the initiative
to grab a frame whenever it is available without
having to wait for instructions to do so.

This particular observing process is simple but
plays an extremely important role in synchroniz-
ing the communication and uniting the different
modules. Optical flow and stereo disparity im-
ages will be pumped out continuously regardless
of whether or not the reasoning system is pre-
pared to process the data. It is extremely im-
portant that this observing process be executed
at a rate no slower than the rate the displace-
ment measures are being pumped out, or other-
wise, the loss of any data frame might greatly
contribute to the inaccuracies of the overall sys-
tem. This is especially critical since we accumu-
late displacements over several frames. Figure 77
shows the structural relation between the active
monitor and other vision processes.

constantly monitoring
fornéw datafrom <
the correlation

Correlation process Active

Optical Flow

Process Monitor Optical Flow | Accumulation

Optical Flow
and Stereo
Disparity

Processes

Figure 4: Perception System

The active monitor observes the data arriving
from the Datacube at the Maxtran. The 128x512
data is transferred into the Maxtran memory by
the monitor. A slight delay is incurred to syn-
chronize image capture in the Maxtran to the
video stream from the Datacube. The flow data is
then downsampled into 64x60 to accomodate the
speed of the downstream processing. The speed
of the Transputer is such that it can just han-

dle downsampling the 128x120 data in 0.1s. We
could downsample in the Datacube to 64x60 and
operate at 15 Hz, but the motion data is more
reliable at 128x120. At that resolution, smaller
motions are not cut off by downsampling.

2.2.2 Reasoning: Determining the Target

The fundamental processing in the tracker is lo-
cating the target, the largest connected region
moving with uniform velocity. For a static sen-
sor, processing is confined to labeling a region of
uniform motion, finding its centroid, and driving
the eye-head to center that point in the visual
field. Then processing can continue. Unfortu-
nately, sensor motion induces optical flow. There
are two solutions: first, stop and shoot, where
the vision system becomes blind during motion,
not unlike our own human visual system during
rapid saccades; and, second, compensation for the
known flow. We have adopted the second since it
leads to a faster, more effective tracker.

Based on our control theories, a cancellation
process is used to reduce the unstable effect of the
background optical flow caused by ego-motion,
before the segmentation process can work on par-
titioning the flow field. Such cancellation process
is integrated into the segmentation process in our
implementation, in the way that whenever the
flow values of a pixel are retreived from the flow
field, the expected background flow computed for
such pixel will be subtracted from the flow val-
ues, resulting in a revised pair of horizontal and
vertical accumulated optical flow.

The expected background flow values for each
pixel is, in theory, calculated by multiplying the
ego-motion parameters with the mapping values
corresponding to the depth of such pixel. A spe-
cial mapping table, indexed by stereo disparity, is
recommended for use with the cancellation pro-
cedure. However, in our current implementation
of the motion tracking system, average mapping
values, one for vertical motion and another for
horizontal, are used instead of a special table.
This approach is adapted because of the difficulty
of establishing a reference point for each depth,
without knowing for sure that such a point will

exist when the cameras are pointing at a random
direction during initialization. It is also our belief
that since cancellation will not completely zero
out the background optical flow due to round off
errors and correlation errors, using average num-
bers are as good in approximation and creation of
“pop-out” effects as using a complete table, whose
entries are also subject to contain errors due to
the use of correlation matching. As a result, the
initialization process for our tracker moves the
head in a certain degree on each axis, and com-
pute how much optical flow has been incurred, as-
suming that the whole scene is stationary. Such
procedure will be repeated a number of times, us-
ing different degrees of motion, before the average
mapping values are derived.

We have implemented a simple distributed
memory connected component labeling program
that processes the 64x64 in three horizontal strips
of 22 rows each. Unfortunately processing occu-
pies three to five frame times. This is the crucial
multirate interface in the system. We insert a
smart buffer here to connect the two processes.
The buffer is embodied in an accumulation pro-
cess that receives flow fields from the Maxtran
and adds successive flows to the initial flow. This
is relatively straightforward except for the fact
that the data must be moved from the initial co-
ordinate system (frame0) to the current frame
and then added to the current displacement, at
each step. To the connected component labeler
(CCL), the smart buffer simply looks like a data
object that contains the optical flow. To the im-
age acquisition process on the Maxtran, it also
appears as a repository for the stream of optical
flow frames coming from the Datacube.

The interpretation cycle of CCL and the tar-
get selector can operate now during egomotion—
when the process that moves the head is finished,
it then requests the largest region from the CCL
process, which then returns the accumulated op-
tical flow. Before computing components, CCL
subtracts the estimated flow due to egomotion
from the accumulated flow. The estimated flow
has been calibrated empirically. Then a correct
flow relative to the new position of the camera

system can be computed. Particularly simple
processing may then be applied, since the mov-
ing object should then “pop out” relative to a
static background. We have not yet implemented
the simplified processing but are using a full con-
nected component analysis.

The full cycle, optical flow computation and ac-
cumulation, flow cancellation and target identifi-
cation requires 800ms, mostly because of the time
required by component labelling. An important
constraint required to cancel apparent motion is
that the eye-head complete its commanded move-
ment before the reasoning system requests optical
flow data from the smart buffer. If the motion is
not complete, incorrect cancellation occurs. We
are also limited in eye-head velocity by the ve-
locity range of the correlation system so that the
apparent motion of the background does not ex-
ceed the flow velocity limits. Currently the sys-
tem is able to track a person moving at a normal
walking pace 2 meters from the cameras.

The system can be improved in several ways.
First, the optical flow computation on the Dat-
acube can be speeded up, increasing the maxi-
mum velocity it can sense, allowing the head to
move more rapidly. Also we are replacing the eye-
head apparatus with a newer model, with signif-
icantly less backlash, that moves faster. Finally,
by simplifying the analysis to determine a target
we hope to reduce the total response time below
500ms.

3 Discussion

A smart buffer is a necessary component in a vi-
sion system where substantial early vision compu-
tation occurs at high rates and later stages oper-
ate at slower cycles. The buffer serves to synthe-
size a virtual data source that can be interrogated
at any time by middle and high-level vision pro-
cesses, independent of the processing cycle of the
interpretation process or the data production cy-
cle of the early vision process. It is implemented
as an object that presents particularly simple in-
terfaces both to the early modules and later mod-
ules. Like an object, it can hide significant inter-

nal processing that may depend on the model of
the image acquisition process, such as noise elim-
ination or stabilization. Unlike an interface built
on a world model, the buffer keeps the data close
to the source sensor model. Moreover, the buffer
can be implemented simply so that it is fast.

