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Abstract

Displacement must be determined in both stereo and
optical flow computation. Correlation or Sum of Dif-
ferences can produce robust displacement estimates.
To tmprove its performance near occlusions and dis-
occlusions, we construct new estimators from a priori
analysis. We introduce smoothly decaying summation
functions into Sum of Differences operators to improve
their reliability. Moreover, we show how occlusions
can be simply detected by comparing the outputs of
support windows of differing size and orientation. We
report the behavior of the system on real and synthetic
images.

1 Introduction

This investigation describes a component to be used
in a vision system that integrates outputs of early vi-
sion modules for tasks such as recognition and navi-
gation. The integration stage computes maps of scene
properties augmented by an explicit representation of
discontinuities in the scene, identifying their physi-
cal origin. We develop techniques for locating dis-
placement discontinuities using information internal
to the stereo and motion modules, rather than by post-
processing the output. Later processing to detect dis-
continuities [11] can then operate with substantially
more information about their location.

The first stage determines an estimate of displace-
ment. This is accomplished by a displacement (stereo
or motion) algorithm using correlation or sum of
squared differences (SSD). The output of that stage
is displacements, confidence measures and a local es-
timate of the location of boundaries. This provides
orientation of local detectors which aid in analysis of
the next frame in an image sequence.

The system finds the most suitable collection of ori-
ented filters to refine motion/stereo boundary detec-
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tion.

2 Displacement and discontinuities

Window size and shape is a critical problem in com-
puting stereo or motion displacements by correlation,
or, more properly, sum of squared differences (SSD).
[7,1,2,10, 6, 8, 4]. If the window is too large, the dis-
placement may vary within the window. On the other
hand, a small window may not cover enough bright-
ness variation to permit correct detection. Levine et
al.[7] described a scheme for varying window size when
the brightness variation is not sufficient. Kanade and
Okutomi [6] show a method that, based on a statistical
model of brightness and disparity variation, adaptively
alters the window size.

We are motivated by considerations of biological
explanation and computational efficiency to consider
algorithms that begin with an assembly of several win-
dows of different sizes and orientations.

Typical systems for displacement identification by
SSD suffer from two defects, aside from window size
determination: first, the window size is chosen small
for efficiency, leading to ambiguity, and, second, the
summation function is a simple rectangular windowing
function that has poor behavior, introducing aliasing
effects.

We report on a method for configuring such sys-
tems, an engineered system, driven by considerations
of simplicity. The interaction among windows is spec-
ified by rules derived from weak a priori assumptions.
We report the behavior of the system on real and syn-
thetic images.

The engineered system includes a simple smooth
windowing function for summation that improves re-
sults dramatically. Experiments with several win-
dowing functions shows that any of several smoothly
decaying centrally weighted windowing function im-
proves both detection and localization. We test detec-
tion and localization by counting errors on synthetic
images.
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Figure 1: Half neighborhoods: a support region and
sub-regions

3 Engineered Detectors

The feature images input to an SSD system consist
of simple difference of Gaussian processing. We base
this decision not only on previous experiments[5] but
also on the nature of cross-correlation[12]; we choose
the sum of absolute values of differences (SAD). This
has several benefits, first, that the magnitude of inter-
mediate results is comparable to the magnitude of the
inputs and, second, the effect of outliers is reduced, in-
creasing the reliability of the detector near occlusions.

In previous work[8], we determined several schemes
for detecting occlusions directly from the output of
the stereo/motion detection stage. One of the schemes
involves varying the size and shape of detectors.

The output of the stereo and motion modules de-
pends on the size of the support neighborhood. When
a depth or motion discontinuity bisects the support
region, the results are less reliable, but can be anal-
ysed to identify occlusions. By using a set of smaller
support regions that divide a support region (see Fig-
ure 1), we can get the response of the matching module
over the range of supports. At a discontinuity, the set
of detectors should give different outputs, and other-
wise should agree.

Increasing the window size, when the contrast range
in the window is small, increases total sum of differ-
ences. Nevertheless, a large summation can eliminate
ambiguity when even there is only small image varia-
tion.

To increase the accuracy of flow estimation, we
treat the images symmetrically, matching from left to
right and right to left for stereo. Points at which the
flows do not agree, to some tolerance, are marked as
indeterminate. Similar methods are shown in [9, 5, 4].
Symmetric matching is a simplification of the geomet-
ric imaging constraints [15]. The original Marr-Poggio
stereo algorithm [9] and a parallel implementation [3]
with many similar geometric features use two lines-
of-sight and optionally the full forbidden zone (FFZ)
to determine support for matching. A selected match
must the better than all others in its FFZ, or just
the two lines of sight. To simplify matching we write

results into two arrays simultaneously and then com-
pare final results. This symmetry is also appealing
from a biological standpoint. Eliminating mismatches
(points not symmetrically matched) reduces the num-
ber of errors significantly.

The support windows vary in size, shape and ori-
entation. They must compete with each other to de-
termine the correct displacement at a pixel. Window
summation for all summation filters are normalized to
unity. The windows compete, and the window with
smallest error wins. In the composite result, detection
of discontinuities improves significantly.

The details of the SSD and SAD implementations
vary, although most have used a box filter for sum-
mation of the difference terms. The box filter intro-
duces unnecessary ringing into the system, so from sig-
nal considerations alone one should use a windowing
(summation) function that decays smoothly to zero at
the boundary of the box [12]. Other considerations,
namely regularization, suggest that the local weight-
ing function should decay smoothly [14].

Several such filters were implemented and tested
both on real and synthetic images. The following sec-
tion describes the results of the tests.

4 Experiments

We use a random dot stereogram for synthetic im-
age experiments. A series of square regions are ar-
ranged at displacements of zero, five and ten pixels,
as in a wedding cake. The box filter extends to n =7
pixels and the Gaussian filter uses an equivalent o = 3.

Several points can be made about the results. First,
in every case, regardless of the filter shape, the com-
posite result has a much lower error rate, approxi-
mately one third that of the symmetric filter. We use
several support functions, including a half Gaussian (a
Gaussian whose output is zero for negative x) and a
half box. They have comparable results (less than 0.2
percent errors on synthetic images). The following ta-
ble lists the numbers of erroneous points after pruning
for mismatched points, for a variety of standard win-
dowing or summation functions [12]. In each case, the
2d filter is generated for the appropriate windowing
function and used for summation. The asymmetric or
oriented summation filters are created by zeroing half
of the filter coefficients in the appropriate half plane.
The composite result (joint) uses the displacement for
the window with least SAD.

These effects are noticeable on the synthetic images
chiefly at the occluding edges of the objects. Each
figure shows the output of the symmetric filter, the
results of the competition among the summation re-
gions and finally the orientation of the summation



Window | Joint | Isotropic | Matched | % wrong

(Gaussian | 92 286 48925 0.188

Box 94 454 48946 0.192

Rayleigh | 375 1803 — —

Blackman | 341 819 — —

Hamming | 294 606 — —

Cosine 288 554 — —

Table 1: Errors on cake example for various summa-
tion filters.

filter chosen at each point. The choice is either the
central (C) isotropic filter or one of the subneighbor-
hoods as depicted in Fig. 1. Figure 2 shows the out-
put where the filter has a Gaussian profile, decaying
smoothly, while Figure 4 shows the output where the
filter is simply a box. Figure 4 shows the results of
the competition between the oriented filters: there are
five brightness categories according to the filter with
least error, including C=center or isotropic, N=north,
E=east, S=south, and W=west.

Figure 4 also shows the points in the right image
at which symmetric matching fails. Each point in the
right image follows its displacement vector into the left
image, and then follows the displacement vector found
there back into the right image. When the trip is not a
round trip, symmetry fails. Formally, these are points
pr where the displacement to the right image from the
left Vr(pr) is such that

Vr(pr) # —VL(pr + Vr(PR))

These are either points where the image content is
ambiguous or which are visible in the right image but
not in the left.
4.1 Test on Real Images

We also used images (256 x 233), taken by a trans-
lating robot, of an outdoor scene containing trees (Fig-
ure 5). The results of the symmetric, asymmetric and
the choice output are shown in Figure 6. Where sym-
metric matching fails is shown in black, overlaid on
the disparity data. There is no interpolation in this
example so the results appear quantized in the figure.

We include subpixel interpolation from the SAD
data. When the two minimal SAD values represent
adjacent displacements, d; and ds, the optimum value
is assumed to lie between the two and its location is
estimated by weighted interpolation d = (wy * da +
wy * dq1)/(d1 + d2), where w; is the SAD value at the
it" point. Both examples use Gaussian summation;
Fig. 6 does not use interpolation, while Fig. 7 does.

Figure 2: (a) Gaussian summation — circularly sym-
metric operator. (b) Asymmetric operator.

The scene structure becomes more visible with inter-
polation; note the tree in the midground on the left
that appears only in the interpolated data. The choice
Figure 6 shows that points where either east or west
filters dominate lie along the boundaries of the trees.
North and south filters dominate in the ground plane
where disparity variation is primarily vertical. igure §,
output of the box filter summator, shows that the de-
tection properties of the box filter are more stable, but
relatively poor at localization.

These experiments only show the results for the
four summations (NESW); other experiments in
progress show promising, improved results for 8 sum-
mation operators including diagonally oriented filters.
So far, we have used asymmetric summation filters
composed of a step edge convolved with a symmetric



Figure 5: Images from translating robot sequence, processed as a stereo pair.

Figure 3: Gaussian summation — choice output

(C=0,N=50,E=100,8=150,W=200).

filter. Extensions to filters where the parameter along
the step boundary varies from the across boundary
parameter appear promising and preliminary results
are encouraging. Ralph[13] has investigated learning
these detectors from examples, with significant im-
provements comparable to those reported here.

5 Conclusion

Correlation stereo and motion, or more properly,
SAD stereo and motion, is a robust technique for de-
tecting displacements. However, SAD stereo can be

improved near occluding boundaries. Symmetric sup-
port regions are subdivided into asymmetric support
regions competing to predict the output. Experiments
with a simple set of four overlapping subregions show
significant improvements, both in synthetic images
and real images. In addition, we show how the use of
a smoothly decaying windowing function (the support
function) improves both localization and detection.

References
[1] P. Anandan. A computational framework and
an algorithm for the measurement of visual mo-
tion. International Journal of Computer Vision,

2:283-310, 1989.

[2] H. Bulthoff, J. J. Little, and T. Poggio. A paral-
lel algorithm for real-time computation of optical

flow. Nature, 337:549-553, February 1989.

[3] M. Drumheller and T. Poggio. On parallel stereo.
In Proc. IEEE Conf. on Robotics and Automa-
tion, 1986, pages 1439-1448, Washington, DC,
1986. Proceedings of the IEEE.

[4] P. Fua. A parallel stereo algorithm that produces
dense depth maps and preserves image features.

Technical Report 1369, INRIA, Jan. 1991.

[5] J. M. Hakkarainen, J. J. Little, H. Lee, and J. W.
Jr. Interaction of algorithm and implementation
for analog VLSI stereo vision. In Proceedings
of 1991 SPIE Conference on Visual Information
Processing: From Neurons to Chips, Apr. 1991.



[6]

T. Kanade and M. Okutomi. A stereo matching
algorithm with an adaptive window: Theory and
experiment. CMU-CS-90-120, Carnegie Mellon
University, Apr. 1990.

M. D. Levine, D. A. O’Handley, and G. M. Yagi.
Computer determination of depth maps. Com-

puter Graphics and Image Processing, 2(4):131-
150, Oct. 1973.

J. J. Little and W. E. Gillett. Direct evidence of
occlusion in stereo and motion. Image and Vision

Computing, 8(4):328-340, Nov. 1990.

D. Marr and T. Poggio. Cooperative computation
of stereo disparity. Science, 194(4262):283-287,
15 October 1976.

L. Matthies, R. Szeliski, and T. Kanade. Kalman
filter-based algorithms for estimating depth from
image sequences. International Journal of Com-

puter Vision, 3:209-236, 1989.

T. Poggio, E. Gamble Jr., and J. J. Little.
Parallel integration of vision modules. Science,

242(4877):436-440, October 1988.

W. K. Pratt. Digital Image Processing (2nd edi-
tion). John Wiley & Sons, New York, NY, 1991.

S. Ralph. A neural network implementation for
integrating discontinuity and displacement infor-
mation. Master’s thesis, The University of British
Columbia, Vancouver, BC, 1991. M.Sc., supervi-
sor J.J. Little.

A. L. Yuille and N. M. Grzywacz. A computa-
tional theory for the perception of coherent visual
motion. Nature, 333:71-74, May 1988.

A. L. Yuille and T. Poggio. A generalized ordering
constraint for stereo correspondence. AI-Memo-

777, MIT Al Laboratory, Cambridge, MA, 1984.

Figure 4: (a) Box summation — square summation.

(b) Box with subsets.
matching fails.

(c) Points where symmetric



Figure 7: Tree image, interpolated. (a) Gaussian sum-
mation — circularly symmetric operator. (b) Asym-

metric operator.
Figure 6: Tree image. (a) Gaussian summation —

circularly symmetric operator. (b) Asymmetric oper-
ator. (c¢) Choice output.



Figure 8: Tree image. Box filter summation.



