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In previous weeks
- We’ve seen that optimisation algorithms such as SGD provide some implicit 

regularisation
- Different algorithmic choices (e.g. batch size) lead to minima with different 

generalisation properties
- Considered sharpness as a measure to explain generalisation performance of 

different optima, but seen it is flawed



Capacity Measures

Features of optima, rather than of optimisation algorithms or architectures: 
importantly, not uniform across all functions representable by a given architecture.
E.g.  - norm in linear regression

- trace-norm / max-norm in matrix factorisation
- sharpness in deep learning

“What is the bias introduced by ... algorithmic choices for 
neural networks? What ensures generalization in neural 
networks? What is the relevant notion of complexity or 

capacity control?”



What properties should a complexity measure have?
Observations:

● our optimization algorithms bias us towards less complex models
● it is possible to capture real data using networks of low complexity

These lead to tests for good complexity measures:

1. We expect the networks learned using real labels to have much lower 
complexity than those learned using random labels

2. We expect a correlation between the complexity measure and generalisation 
among zero-training error models.

3. We expect to see the complexity measure decrease as we increase the 
number of hidden units (and thus improve generalisation).



model class: training set:               hypothesis: 

capacity of a model class: number of examples needed to generalise well

complexity measure:

restricted model class: 

Notation:



Notation: neural networks and losses
Consider d-layer feedfoward networks with ReLU activations:

          is a d-layer neural network

 where    are the weight matrices at each layer and        are the ReLU activations (which 
depend on    ). Each hidden layer has dimension     .

is the loss on    .

        is the expected loss

is the empirical loss over the training set



Candidate capacity measures

1. Network size
2. Norms and margins
3. Lipschitz continuity and robustness
4. Sharpness



Network size (parameter count)

Vapnik–Chervonenkis (VC) dimension:

the cardinality of the largest set of points
 that the algorithm can shatter

Given a network of depth d and number of parameters, dim(w), we can bound the 
VC dimension as follows:

this is not useful when considering networks with more data points than parameters.



Norms and margins

1.

2.

3.

4.



Problem: 
With a 0-1 loss, the scaling of the output is arbitrary. Therefore any norm can 
be scaled arbitrarily by scaling the output.

Solution: 
Quantify the scaling of the output using the margin of a data point:

And define the margin over a dataset as the smallest     such that the proportion of 
data points     with   is at most   . They use 

Then scale the norms by the margin over the training set.

Norms and margins



Norms and margins
Capacity bounds

1.     :

2.     :

3.     :

4.    :



Norms and margins

As expected:
- complexity of models trained on random labels is greater than on real labels
- capacity of model trained on random labels increases faster as the number of 

labels increases

More experimental validation later on.



Lipschitz continuity and robustness

Then the capacity is proportional  to

where 

Weak bound as it is exponential in input dimension.



Lipschitz continuity and robustness
We can use the L1 path norm (                    ) as a Lipschitz constant.

Then the bound scales as:

- Exponential in both input dimension and depth

   



Sharpness
(or vulnerability to adversarial perturbations)



Sharpness
1.

As we saw last week, this fails as a measure when the scale of the parameters is 
changed.

Additionally, sharpness seems to fail to predict
generalisation for networks trained on fewer
labels:



Sharpness
PAC-Bayesian perspective

Consider a predictor       with parameters    learnt from the training set. Suppose 
we have a random variable,   , and a prior distribution,    , over the hypothesis. 
Then, with probability         , the following holds: 

Valid for any prior and perturbation distribution.



Sharpness
PAC-Bayesian perspective

Then we set the prior and perturbation distributions to be spherical Gaussians:



Sharpness
PAC-Bayesian perspective

   The combination of KL and expected sharpness seems to behave sensibly.



Experiments



Back to our three tests:

1. Networks learned using real labels should have much lower complexity than 
those learned using random labels.

2. We expect a correlation between the complexity measure and generalisation 
among zero-training error models.

3. We expect to see the complexity measure decrease as we increase the 
number of hidden units.

Experiments



We have seen results from training on real vs. random data. They consider two more 
experiments: 

1. Training on the union of 10 000 CIFAR10 training images and a randomly labelled 
confusion set. This should lead to networks with zero training error that generalise 
poorly. As the size of the confusion set increases, model capacity should increase as 
test performance decreases.

2. Increasing the network size.They train a fully-connected, single-hidden layer MNIST 
classifier with a varying hidden layer size. All achieve zero-training error, but larger 
hidden layers achieve better generalisation. This should be reflected in a good capacity 
measure.

Experiments



Further Experiments

1.

2.



New Generalisation Bound
They develop a bound by considering conditions to keep sharpness low:

1. Prevent weak interactions between neighbouring layers.
2. Prevent small perturbations in weights causing large changes in the number of activations.
3. Prevent nodes in lower layers with large weight becoming active, causing potentially large 

changes in output 



Conclusion
● Proposed three tests for the usefulness of a capacity measure.
● Reviewed pre-existing measures of capacity.
● Developed a new measure based on PAC-Bayes.


