
Understanding deep learning
requires rethinking generalization

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol
Vinyals

Presentation by Jason Hartford

This paper
see: https://openreview.net/forum?id=Sy8gdB9xx

This paper

The authors report the experimental
findings of a fascinating inquiry on the
ability of the deep neural networks to

fit randomly labelled data. The
investigation is sound, enlightening,

and inspiring…

This is definitely groundbreaking work,
which will inspire many works in the

coming years.
- ICLR meta review (scores: 10, 9, 10)

Got ICLR best paper 2017

see: https://openreview.net/forum?id=Sy8gdB9xx

This paper

I expected to like this paper, because I
respect the authors, and many people
have said good things about it.… I'm
sorry to say I was very disappointed.

[T]he results in this paper are
completely unsurprising. I'm surprised

that the authors were surprised. I'm
shocked that at least one reviewer
thought this was ground breaking.

- Thomas G Dietterich

The authors report the experimental
findings of a fascinating inquiry on the
ability of the deep neural networks to

fit randomly labelled data. The
investigation is sound, enlightening,

and inspiring…

This is definitely groundbreaking work,
which will inspire many works in the

coming years.
- ICLR meta review (scores: 10, 9, 10)

Got ICLR best paper 2017

see: https://openreview.net/forum?id=Sy8gdB9xx

Bias - variance tradeoff
If you Google “bias variance tradeoff”, this is the first result…

Bias - variance tradeoff
If you Google “bias variance tradeoff”, this is the first result…

“State of the art
deep nets do

this…”

Key contributions
Empirically show that standard theory that explains generalization in IID
settings can’t distinguish between neural networks that have radically different
generalization performance. They show…

• Deep networks can easily fit random labels (for image data)

• Explicit regularization helps generalization, but is not sufficient to explain
generalization performance (under standard generalization bounds).

• Explicit construction showing a 2 layer ReLU network with 2n+d parameters
can perfectly fit an n x d training matrix.

• SGD as an implicit regularizer in linear models

Randomization tests

“cat”

“dog”

“dog”

True label

…

Input image

Randomization tests

“cat”

“dog”

“dog”

True label

“airplane”

“automobile”

“cat”

Random label

…

Input image

Randomization tests

“cat”

“dog”

“dog”

True label

…

Input image

Also tested permuting
pixels with a fixed and
random permutation

matrix, but didn’t include
full results on those….

Datasets and models

CIFAR 10
n = 60,000 images

32 x 32 with 10 classes

IMAGENET
n = 1,281,167 images

299 x 299 with 1000 classes

Multilayer perceptron
1,735,178 parameters ≈ 28n

AlexNet - 1,387,786 parameters ≈ 23n

Inception - 1,649,402 parameters ≈ 27n

Trained with
SGD +

momentum
with the same
learning rates
on both true &
random labels.

Explicit
regularization

turned off
initially…

What do we expect?

What do we expect?
• We’ve decoupled the

input and the output so
the network should do
badly even on training?

• There is a local structure
inductive bias in the
networks for image data
that we break with
random inputs…

• Error gradients should be
crazy - will we even be
able to learn anything?

What do we expect?
• We’ve decoupled the

input and the output so
the network should do
badly even on training?

• There is a local structure
inductive bias in the
networks for image data
that we break with
random inputs…

• Error gradients should be
crazy - will we even be
able to learn anything?

• Neural nets are
universal approximators
so it doesn’t matter that
the inputs and outputs
are decoupled. Just
fitting a very non
smooth function

• We’re in the
overparameterized
regime with
regularization turned off
- training error should
be zero

Published as a conference paper at ICLR 2017

(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.

To gain further insight into this phenomenon, we experiment with different levels of randomization
exploring the continuum between no label noise and completely corrupted labels. We also try out
different randomizations of the inputs (rather than labels), arriving at the same general conclusion.

The experiments are run on two image classification datasets, the CIFAR10 dataset (Krizhevsky
& Hinton, 2009) and the ImageNet (Russakovsky et al., 2015) ILSVRC 2012 dataset. We test the
Inception V3 (Szegedy et al., 2016) architecture on ImageNet and a smaller version of Inception,
Alexnet (Krizhevsky et al., 2012), and MLPs on CIFAR10. Please see Section A in the appendix for
more details of the experimental setup.

2.1 FITTING RANDOM LABELS AND PIXELS

We run our experiments with the following modifications of the labels and input images:

• True labels: the original dataset without modification.

• Partially corrupted labels: independently with probability p, the label of each image is
corrupted as a uniform random class.

• Random labels: all the labels are replaced with random ones.

• Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
tion is applied to all the images in both training and test set.

• Random pixels: a different random permutation is applied to each image independently.

• Gaussian: A Gaussian distribution (with matching mean and variance to the original image
dataset) is used to generate random pixels for each image.

Surprisingly, stochastic gradient descent with unchanged hyperparameter settings can optimize the
weights to fit to random labels perfectly, even though the random labels completely destroy the
relationship between images and labels. We further break the structure of the images by shuffling
the image pixels, and even completely re-sampling random pixels from a Gaussian distribution. But
the networks we tested are still able to fit.

Figure 1a shows the learning curves of the Inception model on the CIFAR10 dataset under vari-
ous settings. We expect the objective function to take longer to start decreasing on random labels
because initially the label assignments for every training sample is uncorrelated. Therefore, large
predictions errors are back-propagated to make large gradients for parameter updates. However,
since the random labels are fixed and consistent across epochs, the network starts fitting after going
through the training set multiple times. We find the following observations for fitting random labels
very interesting: a) we do not need to change the learning rate schedule; b) once the fitting starts,
it converges quickly; c) it converges to (over)fit the training set perfectly. Also note that “random
pixels” and “Gaussian” start converging faster than “random labels”. This might be because with

4

(a) learning curves (b) convergence slowdown (c) generalization error growth

It takes 3 times as
long… but you can
still drive training

error to 0

Once fitting starts
it converges

quickly

Large error
gradients

On ImageNet 95.2%
top-1 accuracy

C
IF

AR
 1

0

(a) learning curves (b) convergence slowdown (c) generalization error growth

Published as a conference paper at ICLR 2017

(a) learning curves (b) convergence slowdown (c) generalization error growth

Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.

To gain further insight into this phenomenon, we experiment with different levels of randomization
exploring the continuum between no label noise and completely corrupted labels. We also try out
different randomizations of the inputs (rather than labels), arriving at the same general conclusion.

The experiments are run on two image classification datasets, the CIFAR10 dataset (Krizhevsky
& Hinton, 2009) and the ImageNet (Russakovsky et al., 2015) ILSVRC 2012 dataset. We test the
Inception V3 (Szegedy et al., 2016) architecture on ImageNet and a smaller version of Inception,
Alexnet (Krizhevsky et al., 2012), and MLPs on CIFAR10. Please see Section A in the appendix for
more details of the experimental setup.

2.1 FITTING RANDOM LABELS AND PIXELS

We run our experiments with the following modifications of the labels and input images:

• True labels: the original dataset without modification.

• Partially corrupted labels: independently with probability p, the label of each image is
corrupted as a uniform random class.

• Random labels: all the labels are replaced with random ones.

• Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
tion is applied to all the images in both training and test set.

• Random pixels: a different random permutation is applied to each image independently.

• Gaussian: A Gaussian distribution (with matching mean and variance to the original image
dataset) is used to generate random pixels for each image.

Surprisingly, stochastic gradient descent with unchanged hyperparameter settings can optimize the
weights to fit to random labels perfectly, even though the random labels completely destroy the
relationship between images and labels. We further break the structure of the images by shuffling
the image pixels, and even completely re-sampling random pixels from a Gaussian distribution. But
the networks we tested are still able to fit.

Figure 1a shows the learning curves of the Inception model on the CIFAR10 dataset under vari-
ous settings. We expect the objective function to take longer to start decreasing on random labels
because initially the label assignments for every training sample is uncorrelated. Therefore, large
predictions errors are back-propagated to make large gradients for parameter updates. However,
since the random labels are fixed and consistent across epochs, the network starts fitting after going
through the training set multiple times. We find the following observations for fitting random labels
very interesting: a) we do not need to change the learning rate schedule; b) once the fitting starts,
it converges quickly; c) it converges to (over)fit the training set perfectly. Also note that “random
pixels” and “Gaussian” start converging faster than “random labels”. This might be because with

4

Random pixels
easier than

random labels

C
IF

AR
 1

0

(a) learning curves (b) convergence slowdown (c) generalization error growth

Why does this matter?
Generalization bounds give probabilistic guarantees for how well we
can expect our classifiers to perform on test data.

But we need a way of talking about how “wiggly” our function can get.

One way of formalizing “wiggliness” - Rademacher complexity.

Randomization tests show for the models we use, so
standard bounds don’t tell us anything

ℜ̂n(ℋ) = 𝔼σ [sup
h∈ℋ

1
n

n

∑
i=1

σih (xi)]
ℜ̂n(ℋ) ≈ 1

Hans Rademacher

Okay… but what about regularization?
Regularization motivation: control the size of the hypothesis
class.

• Weight decay (regularization). equivalent to a hard
constrain of the weights to an Euclidean ball.

• data augmentation use domain-specific transformations.
e.g. random cropping, random brightness, saturation, etc.

• dropout mask out each element of a layer output randomly
with a given dropout probability.

Do they prevent the massive overfitting we saw in the
randomization tests?

l2

Published as a conference paper at ICLR 2017

(a) Inception on ImageNet (b) Inception on CIFAR10

Figure 2: Effects of implicit regularizers on generalization performance. aug is data augmentation,
wd is weight decay, BN is batch normalization. The shaded areas are the cumulative best test ac-
curacy, as an indicator of potential performance gain of early stopping. (a) early stopping could
potentially improve generalization when other regularizers are absent. (b) early stopping is not nec-
essarily helpful on CIFAR10, but batch normalization stablize the training process and improves
generalization.

performance, but even with all of the regularizers turned off, all of the models still generalize very
well.

Table 2 in the appendix shows a similar experiment on the ImageNet dataset. A 18% top-1 accuracy
drop is observed when we turn off all the regularizers. Specifically, the top-1 accuracy without
regularization is 59.80%, while random guessing only achieves 0.1% top-1 accuracy on ImageNet.
More strikingly, with data-augmentation on but other explicit regularizers off, Inception is able to
achieve a top-1 accuracy of 72.95%. Indeed, it seems like the ability to augment the data using
known symmetries is significantly more powerful than just tuning weight decay or preventing low
training error.

Inception achieves 80.38% top-5 accuracy without regularization, while the reported number of
the winner of ILSVRC 2012 (Krizhevsky et al., 2012) achieved 83.6%. So while regularization is
important, bigger gains can be achieved by simply changing the model architecture. It is difficult
to say that the regularizers count as a fundamental phase change in the generalization capability of
deep nets.

3.1 IMPLICIT REGULARIZATIONS

Early stopping was shown to implicitly regularize on some convex learning problems (Yao et al.,
2007; Lin et al., 2016). In Table 2 in the appendix, we show in parentheses the best test accuracy
along the training process. It confirms that early stopping could potentially

1 improve the general-
ization performance. Figure 2a shows the training and testing accuracy on ImageNet. The shaded
area indicate the accumulative best test accuracy, as a reference of potential performance gain for
early stopping. However, on the CIFAR10 dataset, we do not observe any potential benefit of early
stopping.

Batch normalization (Ioffe & Szegedy, 2015) is an operator that normalizes the layer responses
within each mini-batch. It has been widely adopted in many modern neural network architectures
such as Inception (Szegedy et al., 2016) and Residual Networks (He et al., 2016). Although not
explicitly designed for regularization, batch normalization is usually found to improve the general-
ization performance. The Inception architecture uses a lot of batch normalization layers. To test the
impact of batch normalization, we create a “Inception w/o BatchNorm” architecture that is exactly
the same as Inception in Figure 3, except with all the batch normalization layers removed. Figure 2b

1We say “potentially” because to make this statement rigorous, we need to have another isolated test set and
test the performance there when we choose early stopping point on the first test set (acting like a validation set).

7

Some theoretical results…

Finite sample expressivity

Theorem 1. There exists a two-layer neural network with ReLU activations and 2n + d
weights that can represent any function on a sample of size n in d dimensions.

i.e. neural networks can perfectly interpolate the training set of any function in the over-
parameterized regime.

Key proof idea:

The role of implicit regularization
• What role does SGD play in generalization performance?

• SGD update:

• If then: so w lies in the

span of the data points x.

• If we enforce interpolation, we have and so
 which we can solve exactly in the linear case.

This is also the minimum l2 norm solution to .

wt+1 = wt − ηtetxit

w0 = 0 w =
n

∑
i

αixi = XTα

Xw = y
XXTα = y

Xw = y

Conclusions

• Overparameterized neural nets lead to vacuous generalization bounds

• Regularization helps with test set generalization performance but doesn’t
significantly change empirical Rademacher complexity (and hence doesn’t
affect bounds).

• Some evidence that SGD acts as a implicit regularizer in the linear case.

