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Introduction

I We are interested in a typical machine learning problem

min
x∈RD

1
N

N∑
i=1

L(x , ai , bi ) + λ · r(x)

data fitting term + regularizer

I Last time, we talked about gradient methods, which work
when D is large

I Today we will talk about stochastic subgradient methods,
which work when N is large
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I We want to minimize a function f (x) = 1
N
∑N

i=1 fi (xi )

I A deterministic gradient method computes the gradient exactly

xt+1 = xt − αt · ∇f (xt) = xt − αt ·
1
N

N∑
i=1

∇fi (xi )

I Computing the exact gradient is O(N)
I We can get convergence with constant αt or using line-search

I A stochastic gradient method [Robbins and Monro, 1951]
estimates the gradient from a sample it ∼ {1, 2, . . . ,N}

xt+1 = xt − αt · ∇fi (xt) = xt − αt ·
1
n
∇fit (xi )

I Note that this gives an unbiased estimate of the gradient;
E
[
f ′it (x)

]
= 1

N

∑N
i=1 i (x) = ∇f (x).

I The iteration cost no longer depends on N
I Convergence requires αt → 0
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I We want to minimize a function f (x) = 1
N
∑N

i=1 fi (xi )

I Deterministic gradient methods

I Stochastic gradient methods [Robbins and Monro, 1951]
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Convergence

Stochastic methods are N times faster per iteration but, what
about convergence?

Assumption Deterministic Stochastic
Convex O(1/t2) O(1/

√
t)

Strongly O((1−
√

u/L)t) O(1/t)

I Stochastic methods have a lower iteration cost, but a lower
convergence rate

I Sublinear rate even under strong convexity
I Bounds are unimprovable if only unbiased gradients are

available
I Momentum/acceleration does not improve convergence
I For convergence, momentum must go to zero [Tseng, 1998]
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Figure : Convergence rates in the strongly convex case

I Stochastic methods are better for low-accuracy/time situations
I It can be hard to know when the crossing will happen
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I The convergence rates look quite different when the function
is non-smooth

I E.g., consider the binary support vector machine

f (x) =
N∑

i=1

max
x
{0, 1− bi (xᵀai )}+ λ‖x‖2

I Rates for subgradient methods in non-smooth objectives:

Assumption Deterministic Stochastic
Convex O(1/

√
t) O(1/

√
t)

Strongly O(1/t) O(1/t)

I Other black-box methods such as cutting plane are not faster
I Take-away point: for non-smooth problems

I Deterministic methods are not faster than stochastic methods
I Stochastic methods are a free, N times faster, lunch
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I For differentiable convex functions, we have

f (y) ≥ f (x) +∇f (x)ᵀ(y − x),∀x , y .

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dᵀ(y − x),∀x , y .

I At differentiable x , the only subgradient is ∇f (x)

I At non-differentiable x , we have a set of subgradients, called
the subdifferential, ∂f (x)

I Notice that if ~0 ∈ ∂f (x), then x is a global minimizer
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Example

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dᵀ(y − x),∀x , y .
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Example

A vector d is a subgradient of a convex function f at x if
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f(x)
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Example

A vector d is a subgradient of a convex function f at x if

f (y) ≥ f (x) + dᵀ(y − x),∀x , y .

f(x)

f(x) + rf(x)|(y � x)
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Another example

Consider the absolute value function: |x |

∂|x | =


1 x > 0
−1 x < 0
[−1, 1] x = 0

f(x)
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Subdifferential of max function

I |x | is a special case of the max function
I Given two convex functions f1(x) and f2(x), the subdifferential

of max(f1(x), f2(x)) is given by

∂max (f1(x), f2(x)) =


∇f1(x) f1(x) > f2(x)

∇f2(x) f1(x) < f2(x)

θ∇f2(x) + (1− θ)∇f2(x) f1(x) = f2(x)
I I.e., any convex combination of the gradients of the argmax
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The subgradient method

I The basic subgradient method:

x t+1 = x t − αtdt ,

for some dt ∈ ∂f (x t)
I The steepest descent dt is argmind∈∂f (x){‖d‖}

I Easy to see in the 1d case
I Easy to find for `1 regularization, but hard in general

f(x)
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The stochastic subgradient method in practice

I Theory says we should do

it ∼ {1, 2, . . . ,N}, αt =
1
µt

x t+1 = x t − α∇fi t(x t).

I O(1/t) for smooth objectives
I O(log(t)/t) for non-smooth objectives

I Do not do this! Why?
I Initial steps will be huge (µ1 = 1/N or 1/

√
N)

I Later steps are tiny (1/t get small very quickly)
I Convergence rate is not robust to mis-specification of µ
I Non-adaptive (very worst-case behaviour)

I What people do in practice
I Use smaller initial steps, then go to zero more slowly
I Take a weighted average of the iterations or gradients

x̄t =
t∑

i=1

wtxt , d̄t =
t∑

i=1

δtdt .
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There is work that supports using large steps and averaging
I [Moulines and Bach, 2011], [Lacoste-Julien et al., 2012]

I Averaging later iterations achieves O(1)̈ in non-smooth case
I Averaging by iteration number achieves the same

I [Nesterov, 2009], [Xiao, 2009]
I Gradient averaging improves constants (‘dual averaging’)
I Finds non-zero variables with sparse regularizers

I [Moulines and Bach, 2011]
I αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t)

I [Nedić and Bertsekas, 2001]
I Constant step size (αt = α) achieves rate of

E
[
f
(
x t)]− f (x∗) ≤ (1− 2µα)t (f (x0)− f (x∗)

)
+O(α)

I [Polyak and Juditsky, 1992]
I In the smooth case, iterate averaging is asymptotically optimal
I Achieves same rate as optimal Stochastic Newton method
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I What about accelerated/Newton-like stochastic methods?
I Stochasticity in these methods does not improve the

convergence rate
I But, it has been shown that

I [Ghadimi and Lan, 2010]
I Acceleration can improve dependence on L and µ
I It improves performance at start if noise is small

I Newton-line AdaGrad method [Duchi et al., 2011]

x t+1 = x t + αD∇fi t(x t), with Djj =

√∑
k=1

t‖∇j fi k(x t)‖

I improves regret bounds, but not optimization error
I Newton-like method [Bach and Moulines, 2013] achieves
O(1/t) without strong-convexity (but with extra
self-concordance assumption)
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I [Ghadimi and Lan, 2010]
I Acceleration can improve dependence on L and µ
I It improves performance at start if noise is small

I Newton-line AdaGrad method [Duchi et al., 2011]

x t+1 = x t + αD∇fi t(x t), with Djj =

√∑
k=1

t‖∇j fi k(x t)‖

I improves regret bounds, but not optimization error
I Newton-like method [Bach and Moulines, 2013] achieves
O(1/t) without strong-convexity (but with extra
self-concordance assumption)
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Recap

I We want to solve problems with BIG data X ∈ RD×N

I When D is large, we use gradient methods
I When N is large, we use stochastic gradient methods

I If the function is non-smooth, stochastic subgradient has great
convergence rates

I Stochastic methods:
I Are N times faster than deterministic methods
I Do a lot of progress quickly, then stall

I In practice:
I Choose smaller step sizes at the beginning
I Averaging the iterations / gradients helps
I Taking a permutation of the data (no longer unbiased

gradient) works well too

I Next week Mohammed will talk about finite-sum methods
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