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Introduction

» We are interested in a typical machine learning problem

m|n—Zan,, + - r(x)

xeRD N
data f|tt|ng term + regularizer
» Last time, we talked about gradient methods, which work

when D is large

» Today we will talk about stochastic subgradient methods,
which work when N is large
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Stochastic gradient

> We want to minimize a function f(x) = % Z,N:l fi(xi)
> A deterministic gradient method computes the gradient exactly

N
1
Xet1 =Xt — - VI(xe) = x —ae - d " Vfi(xi)
i1

» Computing the exact gradient is O(N)
» We can get convergence with constant «; or using line-search
» A stochastic gradient method [Robbins and Monro, 1951]
estimates the gradient from a sample iy ~ {1,2,..., N}

1
Xe41 = Xe — - VEi(Xe) = X¢ — ¢ - ;vﬁr(xi)

» Note that this gi\,/\?s an unbiased estimate of the gradient;
E[f/(x)] = § il i(x) = VF(x).

» The iteration cost no longer depends on N

» Convergence requires oy — 0
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Stochastic gradient

> We want to minimize a function f(x) = % ZlNzl fi(xi)

» Deterministic gradient methods
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Convergence
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about convergence?
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Convergence rates

Convergence

Stochastic methods are N times faster per iteration but, what
about convergence?

Assumption ‘ Deterministic ‘ Stochastic
Convex 0(1/t?) O(1/Vt)
Strongly O((1—u/L)) | O(1/t)

» Stochastic methods have a lower iteration cost, but a lower
convergence rate

» Sublinear rate even under strong convexity

» Bounds are unimprovable if only unbiased gradients are
available
> Momentum/acceleration does not improve convergence
» For convergence, momentum must go to zero [Tseng, 1998]
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Convergence rates

stochastic

deterministic

log(excess cost)

time

Figure : Convergence rates in the strongly convex case

» Stochastic methods are better for low-accuracy/time situations

» |t can be hard to know when the crossing will happen

Julieta Martinez Subgradient methods



Convergence rates

» The convergence rates look quite different when the function
is non-smooth

Julieta Martinez Subgradient methods



Convergence rates

» The convergence rates look quite different when the function
is non-smooth

» E.g., consider the binary support vector machine

N
f(x) = Z max{0,1 — bi(xTa;)} + \||x||?
i=1

Julieta Martinez Subgradient methods



Convergence rates

» The convergence rates look quite different when the function
is non-smooth

» E.g., consider the binary support vector machine

N
f(x) = Z max{0,1 — bi(xTa;)} + \||x||?
i=1

» Rates for subgradient methods in non-smooth objectives:

Julieta Martinez Subgradient methods



Convergence rates

» The convergence rates look quite different when the function
is non-smooth

» E.g., consider the binary support vector machine

N
f(x) = Z max{0,1 — bi(xTa;)} + \||x||?
i=1

» Rates for subgradient methods in non-smooth objectives:

Julieta Martinez Subgradient methods



Convergence rates

» The convergence rates look quite different when the function
is non-smooth

» E.g., consider the binary support vector machine
N
F(x) = max{0,1— b(xTa;)} + x|
=
» Rates for subgradient methods in non-smooth objectives:

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1//t) O(1//t)
Strongly O(1/t) O(1/t)
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Convergence rates

v

The convergence rates look quite different when the function
is non-smooth

v

E.g., consider the binary support vector machine

N
f(x) = Z max{0,1 — bi(xTa;)} + \||x||?
i=1

Rates for subgradient methods in non-smooth objectives:

v

Assumption ‘ Deterministic ‘ Stochastic

Convex O(1//t) O(1//t)
Strongly O(1/t) O(1/t)

v

Other black-box methods such as cutting plane are not faster
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Convergence rates

» The convergence rates look quite different when the function
is non-smooth

» E.g., consider the binary support vector machine

N
f(x) = Z max{0,1 — b;j(xTa;)} + A||x||
i=1
» Rates for subgradient methods in non-smooth objectives:

Assumption ‘ Deterministic ‘ Stochastic

Convex O(1//t) O(1//t)
Strongly O(1/t) O(1/t)

» Other black-box methods such as cutting plane are not faster
» Take-away point: for non-smooth problems

» Deterministic methods are not faster than stochastic methods
» Stochastic methods are a free, N times faster, lunch
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Subgradients & subdifferentials

» For differentiable convex functions, we have

f(y) > f(x)+ VFI(x)T(y — x),Vx, y.
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Subgradients & subdifferentials

» For differentiable convex functions, we have
fly) = £(x) + VI(x)T(y — x),Vx,y.

A vector d is a subgradient of a convex function f at x if

Fly) = £(x) +dT(y — x),¥x,y.

» At differentiable x, the only subgradient is V£ (x)

» At non-differentiable x, we have a set of subgradients, called
the subdifferential, 9f(x)

> Notice that if 0 € 9f(x), then x is a global minimizer
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Subgradients & subdifferentials

Example

A vector d is a subgradient of a convex function f at x if

Fy) = F(x) +dT(y = x), ¥x, y.
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Example

A vector d is a subgradient of a convex function f at x if

Fy) = F(x) +dT(y = x), ¥x, y.
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Subgradients & subdifferentials

Another example

Consider the absolute value function: |x]|

1 x>0
x| =4 -1 x <0
[-1,1] x=0
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Subgradients & subdifferentials

Subdifferential of max function

> |x| is a special case of the max function

» Given two convex functions f1(x) and f(x), the subdifferential
of max(f(x), f2(x)) is given by

Vh(x) f(x) > f(x)
dmax (f(x), f2(x)) = | V(x) hi(x) <
OVhH(x) + (1 = 0)Vh(x)  f(x) = fa(x)
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Subgradients & subdifferentials

Subdifferential of max function

> |x| is a special case of the max function

» Given two convex functions f1(x) and f(x), the subdifferential
of max(f(x), f2(x)) is given by

Vi (x) f(x) > ()
dmax (fi(x), h(x)) = { VH(x) fi(x) < f2(x)
OVhHh(x) + (1 - 0)Vh(x) f(x) = f(x)

> |.e., any convex combination of the gradients of the argmax
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The subgradient method

» The basic subgradient method:

L= xt - ady,

X
for some d; € Of (x*")
> The steepest descent d; is argmingear(x)1lld|l}

» Easy to see in the 1d case
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The subgradient method

» The basic subgradient method:

Xt+1 = Xt — Oétdj_-,

for some d; € Of (x?)
> The steepest descent d; is argmingear(x1lld|l}
» Easy to see in the 1d case
» Easy to find for £; regularization, but hard in general
» If di # argmingd € 0f(x)}||d||, the objective may increase
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The subgradient method

» The basic subgradient method:

t+1

X :Xt—atdt,

for some d; € Of (x?)
> The steepest descent d; is argmingear(x1lld|l}
» Easy to see in the 1d case
Easy to find for ¢; regularization, but hard in general
If di # argmingd € Of(x)}||d||, the objective may increase
But [|x+1 — x*|| < ||xt — x*|| for small enough a
Again, for convergence, we require o — 0
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Stochastic subgradient method

The subgradient method

» The basic subgradient method:

Xt+1

for some d; € Of (x?)
> The steepest descent d; is argmingear(x1lld|l}
» Easy to see in the 1d case
Easy to find for ¢; regularization, but hard in general
If di # argmingd € Of(x)}||d||, the objective may increase
But [|x+1 — x*|| < ||xt — x*|| for small enough a
Again, for convergence, we require o — 0

= Xt - atdta

vV vy VvVYyy

» The basic stochastic subgradient method
Xt+1 _ Xt . atdit

for some d;y € Ofit(x?), ir ~ {1,2,..., N}
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Stochastic subgradient method

The stochastic subgradient method in practice

» Theory says we should do

1
it~{1,2,...,N}, at:I

Xt = xt — aVf(xh).
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The stochastic subgradient method in practice

» Theory says we should do
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Mt
Xt = xt — aVi(xh).
» O(1/t) for smooth objectives
» O(log(t)/t) for non-smooth objectives
» Do not do this! Why?
> Initial steps will be huge (1 = 1/N or 1/v/N)
> Later steps are tiny (1/t get small very quickly)
» Convergence rate is not robust to mis-specification of p
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The stochastic subgradient method in practice

» Theory says we should do
1

ip~{1,2,...,N oy = —
t { ) &y ) }7 t LLe
Xt = xt — aVi(xh).
» O(1/t) for smooth objectives
» O(log(t)/t) for non-smooth objectives
» Do not do this! Why?
Initial steps will be huge (u1 = 1/N or 1/v/N)
Later steps are tiny (1/t get small very quickly)
Convergence rate is not robust to mis-specification of 4
Non-adaptive (very worst-case behaviour)
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The stochastic subgradient method in practice

» Theory says we should do
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it~{1,2,...,N}, oy — —
Mt
Xt = xt — aVi(xh).
» O(1/t) for smooth objectives
» O(log(t)/t) for non-smooth objectives
» Do not do this! Why?
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» Non-adaptive (very worst-case behaviour)
» What people do in practice
» Use smaller initial steps, then go to zero more slowly

Julieta Martinez Subgradient methods



Stochastic subgradient method

The stochastic subgradient method in practice

» Theory says we should do
1

it~{1,2,...,N}, oy — —
Mt
Xt = xt — aVi(xh).
» O(1/t) for smooth objectives
» O(log(t)/t) for non-smooth objectives
» Do not do this! Why?
> Initial steps will be huge (u1 = 1/N or 1/v/N)
> Later steps are tiny (1/t get small very quickly)
» Convergence rate is not robust to mis-specification of p
» Non-adaptive (very worst-case behaviour)
» What people do in practice
» Use smaller initial steps, then go to zero more slowly
» Take a weighted average of the iterations or gradients

t t
Xt = E Wi Xt, d = E Ordy.
i=1 i=1
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There is work that supports using large steps and averaging
» [Moulines and Bach, 2011], [Lacoste-Julien et al., 2012]

» Averaging later iterations achieves O(1) in non-smooth case
» Averaging by iteration number achieves the same

[Nesterov, 2009], [Xiao, 2009]

» Gradient averaging improves constants (‘dual averaging’)
» Finds non-zero variables with sparse regularizers

[Moulines and Bach, 2011]
> a; = O(1/tP) for B € (0.5,1) more robust than a; = O(1/t)
[Nedi¢ and Bertsekas, 2001]

» Constant step size (a; = «) achieves rate of

v

v

v

E[f (x)] = f(x*) < (1- 2ua)t (f (XO) —f(x)) + O(a)
[Polyak and Juditsky, 1992]

> In the smooth case, iterate averaging is asymptotically optimal
» Achieves same rate as optimal Stochastic Newton method

v
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» What about accelerated/Newton-like stochastic methods?

» Stochasticity in these methods does not improve the
convergence rate
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» What about accelerated/Newton-like stochastic methods?
» Stochasticity in these methods does not improve the
convergence rate
> But, it has been shown that
» [Ghadimi and Lan, 2010]

> Acceleration can improve dependence on L and p
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> |t improves performance at start if noise is small
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» [Ghadimi and Lan, 2010]
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» What about accelerated/Newton-like stochastic methods?
» Stochasticity in these methods does not improve the
convergence rate
> But, it has been shown that
» [Ghadimi and Lan, 2010]

> Acceleration can improve dependence on L and p
> |t improves performance at start if noise is small

» Newton-line AdaGrad method [Duchi et al., 2011]

X =x' 4 aDVf(x'),  with Dy = > t[|Vifi(xt)|
k=1

Julieta Martinez Subgradient methods



Stochastic subgradient method

» What about accelerated/Newton-like stochastic methods?

» Stochasticity in these methods does not improve the
convergence rate

» But, it has been shown that
» [Ghadimi and Lan, 2010]

> Acceleration can improve dependence on L and p
> |t improves performance at start if noise is small

» Newton-line AdaGrad method [Duchi et al., 2011]

X =x' 4 aDVf(x'),  with Dy = > t[|Vifi(xt)|
k=1

» improves regret bounds, but not optimization error
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» What about accelerated/Newton-like stochastic methods?
» Stochasticity in these methods does not improve the
convergence rate
> But, it has been shown that
» [Ghadimi and Lan, 2010]

> Acceleration can improve dependence on L and p
> |t improves performance at start if noise is small

» Newton-line AdaGrad method [Duchi et al., 2011]

X =x' 4 aDVf(x'),  with Dy = > t[|Vifi(xt)|
k=1

» improves regret bounds, but not optimization error

» Newton-like method [Bach and Moulines, 2013] achieves
O(1/t) without strong-convexity (but with extra
self-concordance assumption)
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» We want to solve problems with BIG data X € RP*N
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» We want to solve problems with BIG data X € RP*N
» When D is large, we use gradient methods

» When N is large, we use stochastic gradient methods

» If the function is non-smooth, stochastic subgradient has great
convergence rates
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v

We want to solve problems with BIG data X € RP*N
When D is large, we use gradient methods

When N is large, we use stochastic gradient methods

» If the function is non-smooth, stochastic subgradient has great
convergence rates

v

v

Stochastic methods:
» Are N times faster than deterministic methods

v
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When N is large, we use stochastic gradient methods

» If the function is non-smooth, stochastic subgradient has great
convergence rates
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v

Stochastic methods:

» Are N times faster than deterministic methods
» Do a lot of progress quickly, then stall
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v

We want to solve problems with BIG data X € RP*N

v

When D is large, we use gradient methods

v

When N is large, we use stochastic gradient methods

» If the function is non-smooth, stochastic subgradient has great
convergence rates

Stochastic methods:

» Are N times faster than deterministic methods
» Do a lot of progress quickly, then stall

v

v

In practice:
» Choose smaller step sizes at the beginning
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We want to solve problems with BIG data X € RP*N

v

When D is large, we use gradient methods

v

When N is large, we use stochastic gradient methods

» If the function is non-smooth, stochastic subgradient has great
convergence rates

Stochastic methods:

» Are N times faster than deterministic methods
» Do a lot of progress quickly, then stall

v

v

In practice:

» Choose smaller step sizes at the beginning
» Averaging the iterations / gradients helps
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v

We want to solve problems with BIG data X € RP*N

v

When D is large, we use gradient methods

v

When N is large, we use stochastic gradient methods
» If the function is non-smooth, stochastic subgradient has great
convergence rates
Stochastic methods:

» Are N times faster than deterministic methods
» Do a lot of progress quickly, then stall

v

v

In practice:
» Choose smaller step sizes at the beginning
» Averaging the iterations / gradients helps
» Taking a permutation of the data (no longer unbiased
gradient) works well too
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Recap

v

We want to solve problems with BIG data X € RP*N

v

When D is large, we use gradient methods

v

When N is large, we use stochastic gradient methods

» If the function is non-smooth, stochastic subgradient has great
convergence rates

Stochastic methods:

v

» Are N times faster than deterministic methods
» Do a lot of progress quickly, then stall

v

In practice:
» Choose smaller step sizes at the beginning
» Averaging the iterations / gradients helps
» Taking a permutation of the data (no longer unbiased
gradient) works well too

Next week Mohammed will talk about finite-sum methods

v
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