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At a loss: Landscaping loss, and how it affects generalization
-Adam



Flat Minima Generalize Well

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima,” arXiv:1609.04836 [cs, math], Sep. 2016.

“We investigate the cause for this generalization drop in the large-batch regime and present numerical evidence that supports the
view that large-batch methods tend to converge to sharp minimizers of the training and testing functions—and as is well known,

sharp minima lead to poorer generalization.”

Good Generalizer Bad Generalizer



Flat Minima Can Generalize Well

When using stochastic gradient descent:

e batches of size 256 generalize better and are flatter than batches of size 10%



Flat Minima Generalize Well?

Is it really flat minima that generalize well?

Batch | Acc. | bt

16 | 100 (77.68) | 0.64 (32.78)
32 | 100 (76.77) | 0.97 (45.28)
64 | 100 (77.32) = 0.77 (48.06)
128 | 100 (78.84) | 1.33 (137.5)
256 | 100 (78.54) | 3.34 (338.3)
512 | 100 (79.25) | 16.88 (885.6)
1024 | 100 (78.50) | 51.67 (2372)
2048 | 100 (77.31) | 80.18 (3769 )

C1 Cifar-10

Z. Yao, A. Gholami, Q. Lei, K. Keutzer, and M. W. Mahoney, “Hessian-based Analysis of Large Batch Training and
Robustness to Adversaries,” arXiv:1802.08241 [cs, stat], Feb. 2018.
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Why do flat minima generalize well? . e
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Which of the following are true:

1. Flat minima are the reason for good generalization

2. Gradient descent methods gravitate to flat minima more easily.

a. Thus models that generalize get chosen over models that do not, causing the
model selection process to biased towards performing well in flat minima for the
data regimes that they have been selected for.

3. Something else



Do flat minima mark good generalization?

Table 6: Effect of Data Augmentation

Testing Accuracy

Baseline (SB)

Augmented LB

Sharpness (LB method)

e=10""°

e=5-10"4

Ch
C,
Cs
Cy

83.63% + 0.14%
89.82% + 0.12%
54.55% + 0.44%

63.05% + 0.5%

82.50% £ 0.67%

90.26% + 1.15%

53.03% + 0.33%
65.88 + 0.13%

231.77 £+ 30.50
468.65 + 47.86
103.68 = 11.93
271.06 £+ 29.69

45.89 + 3.83
105.22 + 19.57
37.67 £ 3.46
45.31 + 5.93

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima,”

arXiv:1609.04836 [cs, math], Sep. 2016.



Coarse Model for Minima
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“Sharp Minima Can Generalize For Deep Nets,”
L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio
Mar. 2017.



Broad Strokes

Models can be tweaked after training to adjust sharpness according to common
metrics.



Common Flatness Metrics

1. Volume flatness
2. e-sharpness
3. Hessian Based



Flatness 1
Volume flatness:

Definition 1. Given ¢ > 0, a minimum ¢, and a loss L,
we define C'(L, 0, ¢) as the largest (using inclusion as the
partial order over the subsets of ©) connected set containing
0 such that ¥0' € C(L,0,¢),L(0') < L(0) + €. The -
flatness will be defined as the volume of C(L,0,¢€). We will
call this measure the volume c-flatness.

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio



Flathess 1

Volume flathess has infinite volume for rectified neural networks.

Definition 1. Given ¢ > 0, a minimum ¢, and a loss L,
we define C'(L, 0, ¢) as the largest (using inclusion as the
partial order over the subsets of © ) connected set containing
0 such that V' € C(L,0,¢),L(0') < L(0) + €. The e-
flatness will be defined as the volume of C(L,0,¢€). We will
call this measure the volume c-flatness.

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio



Flathess 2

e-sharpness: (Keskar et. al flatness)

Definition 2. Let By(¢, ) be an Euclidean ball centered
on a minimum 0 with radius €. Then, for a non-negative
valued loss function L, the e-sharpness will be defined as
proportional to

MaXg ¢ B, (e.0) (L(#") - L(()))
1+ L(6) '

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio




F I atness 2 Definition 2. Let By(e,0) be an Euclidean ball centered

on a minimum 0 with radius €. Then, for a non-negative
valued loss function L, the e-sharpness will be defined as
proportional to

Ill?ng/eBg(e,g) (L((}’) — L(()))
1+ L(6) '

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio

e-sharpness: (Keskar et. al flatness)

“For rectified neural network every minimum is observationally equivalent to a
minimum that generalizes as well but with high e-sharpness. This also applies
when using full-space e-sharpness used by Keskar et al. (2017).”

Full-space is related to spectral norm.



F I atness 2 Definition 2. Let By(e,0) be an Euclidean ball centered

on a minimum 0 with radius €. Then, for a non-negative
valued loss function L, the e-sharpness will be defined as

e-sharpness: (Keskar et. al flatness) ——

Ill?ng/eBg(e,g) (L((}’) — L(()))
1+ L(6) '

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio

“For rectified neural network every minimum is observationally equivalent to a
minimum that generalizes as well but with high e-sharpness. This also applies
when using full-space e-sharpness used by Keskar et al. (2017).”

Full-space is related to spectral norm of the Hessian.

What about other eigenvalues?



Flathess 2

What about other eigenvalues?

“We have not been able to show a similar problem with random subspace
e-sharpness used by Keskar et al. (2017)”



Hessian Flatness

Looks at network curvature is with respect to parameters



Hessian Flatness Quantification

Values used:

e Spectral Norm
e Trace



Hessian Flatness Quantification

Values used:

e Spectral Norm
e Trace (lower bounded by spectral norm)



Alpha-Scale Transformation

Definition 3. Given K weight matrices (01 )<k withny, =
dim(vec(0y)) and n = Zszl nk, the output y of a deep
rectified feedforward networks with a linear output layer is:

Yy = d)rect (¢rect( e (brect(x : 91) o ) ' GKVI) ' eK,

Definition 5. For a single hidden layer rectifier feedforward
network we define the family of transformations

Ta 2 (91,92) —> (0491,04_192)

which we refer to as a a-scale transformation.



2-layer version

(V2L) (b1, 0 105)

_ [ “_;Hm a]?m ] (VZL)(91,6‘2)[

Spectral norm can be arbitrarily scaled



Multi-layer version

Eigenvalues of n-1 layers can be scaled arbitrarily large, where n is the count of
the layers.



Hessian Measures that can avoid this

Maybe a product of hessian eigenvalues... can still be scaled to be sharper, but
relative sharpness will be maintained.



Model re-parameterization & input space

Can re-parameterize weights as function to change landscape.

(c) Loss function with another reparametrization

(a) Loss function with default parametrization

Figure 5: A one-dimensional example on how much the
geometry of the loss function depends on the parameter
space chosen. The z-axis is the parameter value and the
y-axis is the loss. The points correspond to a regular grid in
the default parametrization. In the default parametrization,
all minima have roughly the same curvature but with a
careful choice of reparametrization, it is possible to turn
a minimum significantly flatter or sharper than the others.
(b) Loss function with reparametrization Reparametrizations in this figure are of the form n = (|0 —
02 + b)2(0 — 0) where b > 0,a > —% and 0 is shown with
the red vertical line.




Conclusion

Flat minima don'’t necessarily generalize better than sharp ones.

Exploiting non-identifiability allows changing surface without affecting function.
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Conclusion

Flat minima don'’t necessarily generalize better than sharp ones.

Exploiting non-identifiability allows changing surface without affecting function.

More care is needed to define flathess.
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Bayesian method

S. L. Smith and Q. V. Le, “A Bayesian Perspective on Generalization and
Stochastic Gradient Descent,” arXiv:1710.06451 [cs, stat], Oct. 2017.

Likely models are a combination of depth and breadth

P(y|z; M) = A3e=C0) /|VVC ()|
(A3 /|VVCO(W)[u)7)



Occam Factor

Regularization constant divided by product of eigenvalues of hessian.

(A3 /|VVC(W)]7)



SGD Noise Scale

S. L. Smith and Q. V. Le, “A Bayesian Perspective on Generalization and
Stochastic Gradient Descent,” arXiv:1710.06451 [cs, stat], Oct. 2017.

g=c¢% —1) ~eN/B



eN/B

Table 6: Effect of Data Augmentation

Testing Accuracy

Sharpness (LB method)

Baseline (SB) Augmented LB e=10"3 e=5-10"%

71 | 83.63% £ 0.14% | 82.50% + 0.67% | 231.77 £30.50 | 45.89 + 3.83
7y | 89.82% £ 0.12% | 90.26% + 1.15% | 468.65 + 47.86 | 105.22 4+ 19.57

Cs | 54.55% + 0.44% | 53.03% +0.33% | 103.68 + 11.93 | 37.67 & 3.46

Cy | 63.05% +£0.5% | 65.88+0.13% | 271.06 £29.69 | 45.31 +5.93

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima,”

arXiv:1609.04836 [cs, math], Sep. 2016.



Addendum

Warme-starting models...

Check out: S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t Decay the Learning Rate, Increase the Batch Size,”
arXiv:1711.00489 [cs, stat], Nov. 2017.



Is flatness a goose-chase?

Why focus on flatness rather than directly on training paradigms that directly affect
generalization?

Can we optimize over the model itself to improve flatness as well? Eg.
Skip-connections, other online transformations



