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At a loss: Landscaping loss, and how it affects generalization
-Adam



Flat Minima Generalize Well

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning: 
Generalization Gap and Sharp Minima,” arXiv:1609.04836 [cs, math], Sep. 2016.

“We investigate the cause for this generalization drop in the large-batch regime and present numerical evidence that supports the 
view that large-batch methods tend to converge to sharp minimizers of the training and testing functions—and as is well known, 
sharp minima lead to poorer generalization.”



Flat Minima Can Generalize Well
When using stochastic gradient descent:

● batches of size 256 generalize better and are flatter than batches of size 10%



Flat Minima Generalize Well?
Is it really flat minima that generalize well?

Z. Yao, A. Gholami, Q. Lei, K. Keutzer, and M. W. Mahoney, “Hessian-based Analysis of Large Batch Training and 
Robustness to Adversaries,” arXiv:1802.08241 [cs, stat], Feb. 2018.



Which of the following are true:

1. Flat minima are the reason for good generalization
2. Gradient descent methods gravitate to flat minima more easily.

a. Thus models that generalize get chosen over models that do not, causing the 
model selection process to biased towards performing well in flat minima for the 
data regimes that they have been selected for.

3. Something else

Why do flat minima generalize well?
Presuming that flat minima mark

good generalization



Do flat minima mark good generalization?

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima,” 
arXiv:1609.04836 [cs, math], Sep. 2016.



Coarse Model for Minima



“Sharp Minima Can Generalize For Deep Nets,”
L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio

Mar. 2017.



Broad Strokes
Models can be tweaked after training to adjust sharpness according to common 
metrics.



Common Flatness Metrics
1. Volume flatness
2. ϵ-sharpness
3. Hessian Based



Flatness 1
Volume flatness:

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio



Flatness 1
Volume flatness has infinite volume for rectified neural networks.

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio



Flatness 2
ϵ-sharpness: (Keskar et. al flatness)

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio



Flatness 2
ϵ-sharpness: (Keskar et. al flatness)

“For rectified neural network every minimum is observationally equivalent to a 
minimum that generalizes as well but with high ϵ-sharpness. This also applies 
when using full-space ϵ-sharpness used by Keskar et al. (2017).”

Full-space is related to spectral norm.
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Flatness 2
ϵ-sharpness: (Keskar et. al flatness)

“For rectified neural network every minimum is observationally equivalent to a 
minimum that generalizes as well but with high ϵ-sharpness. This also applies 
when using full-space ϵ-sharpness used by Keskar et al. (2017).”

Full-space is related to spectral norm of the Hessian.

What about other eigenvalues?

“Sharp Minima Can Generalize For Deep Nets,” L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio



Flatness 2
What about other eigenvalues?

“We have not been able to show a similar problem with random subspace 
ϵ-sharpness used by Keskar et al. (2017)”



Hessian Flatness
Looks at network curvature is with respect to parameters



Hessian Flatness Quantification
Values used:

● Spectral Norm
● Trace



Hessian Flatness Quantification
Values used:

● Spectral Norm
● Trace (lower bounded by spectral norm)



Alpha-Scale Transformation



2-layer version

Spectral norm can be arbitrarily scaled



Multi-layer version
Eigenvalues of n-1 layers can be scaled arbitrarily large, where n is the count of 
the layers.



Hessian Measures that can avoid this
Maybe a product of hessian eigenvalues… can still be scaled to be sharper, but 
relative sharpness will be maintained.



Model re-parameterization & input space
Can re-parameterize weights as function to change landscape.



Conclusion
Flat minima don’t necessarily generalize better than sharp ones.

Exploiting non-identifiability allows changing surface without affecting function.
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Conclusion
Flat minima don’t necessarily generalize better than sharp ones.

Exploiting non-identifiability allows changing surface without affecting function.

More care is needed to define flatness.



Bayesian method
S. L. Smith and Q. V. Le, “A Bayesian Perspective on Generalization and 
Stochastic Gradient Descent,” arXiv:1710.06451 [cs, stat], Oct. 2017.

Likely models are a combination of depth and breadth



Occam Factor
Regularization constant divided by product of eigenvalues of hessian.



SGD Noise Scale
S. L. Smith and Q. V. Le, “A Bayesian Perspective on Generalization and 
Stochastic Gradient Descent,” arXiv:1710.06451 [cs, stat], Oct. 2017.



N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima,” 
arXiv:1609.04836 [cs, math], Sep. 2016.



Addendum
Warm-starting models...
Check out: S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t Decay the Learning Rate, Increase the Batch Size,” 
arXiv:1711.00489 [cs, stat], Nov. 2017.



Is flatness a goose-chase?
Why focus on flatness rather than directly on training paradigms that directly affect 
generalization?

Can we optimize over the model itself to improve flatness as well? Eg. 
Skip-connections, other online transformations


