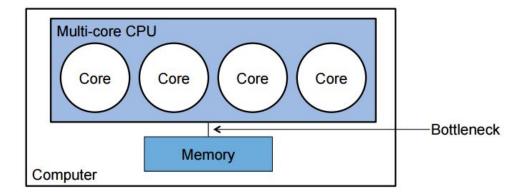
Parallel & Distributed Optimization

Based on Mark Schmidt's slides

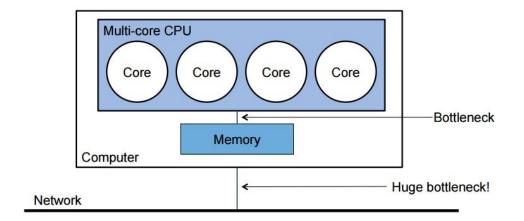
Motivation behind using parallel & Distributed optimization

Performance

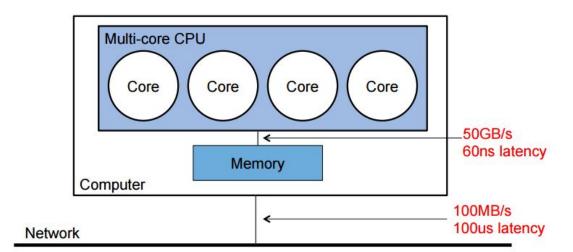

- Computational throughput have increased exponentially in linear time (Moore's law)
- But only so many transistors can fit in limited space (atomic size)
- Serial computation throughput plateaued (Moore's law coming to an end)

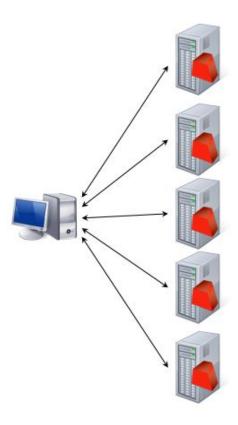
Space

Large datasets cannot fit on a single machine

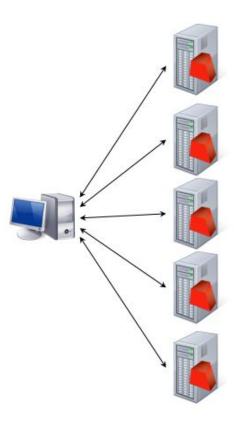

Introduction

- Parallel Computing
 - One machine
 - Multiple processors (Quad-Core, GPU)


Introduction

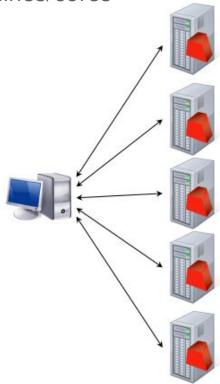

- Parallel Computing
 - o One machine
 - Multiple processors (Quad-Core, GPU)
- Distributed Computing
 - Multiple computers, linked via network

Introduction


- Parallel Computing
 - One machine
 - Multiple processors (Quad-Core, GPU)
- Distributed Computing
 - Multiple computers, linked via network

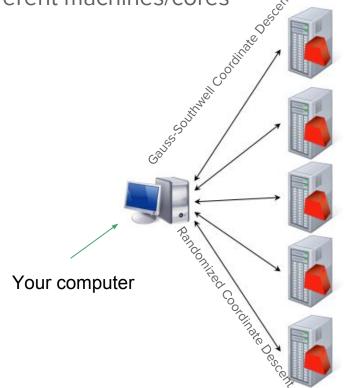
Distributed optimization

- Strategy
 - Each machine handles a subset of the dataset
- Issues
 - o link failures between machines
 - devise algorithms that limits communication
 - decentralize optimization
- Synchronization
 - wait for slowest machine when the all machines depend on the va coordinates


Distributed optimization

- Strategy
 - Each machine handles a subset of the dataset
- Issues
 - link failures between machines
 - synchronization
 - wait for the slowest machine to complete processing its data
- Solutions
 - o devise algorithms that limits communication
 - decentralize optimization

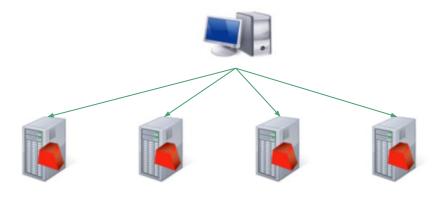
Straightforward distributed optimization


- Run different algorithms/strategies on different machines/cores
 - First one that finishes wins
 - Gauss-Southwell Coordinate Descent
 - Randomized Coordinate Descent
 - Gradient Descent
 - Stochastic Gradient Descent

Straightforward distributed optimization

Run different algorithms/strategies on different machines/cores

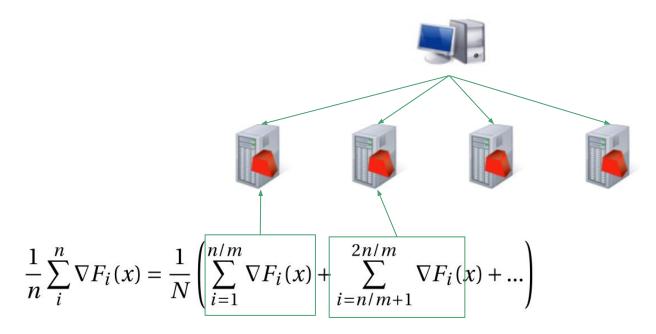
- First one that finishes wins
 - Gauss-Southwell Coordinate Descent
 - Randomized Coordinate Descent
 - Gradient Descent
 - Stochastic Gradient Descent



Synchronized deterministic Gradient Descent

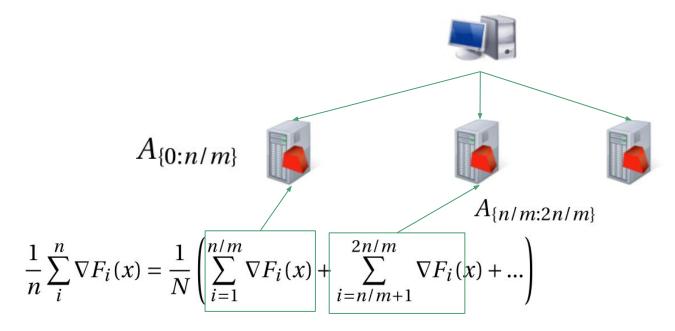
$$\min_{x \in R^p} \left\{ F(x) = \frac{1}{n} \sum_{i=1}^n F_i(x) \right\}$$

Can be broken into separable components


$$\frac{1}{n} \sum_{i=1}^{n} \nabla F_{i}(x) = \frac{1}{N} \left(\sum_{i=1}^{n/m} \nabla F_{i}(x) + \sum_{i=n/m+1}^{2n/m} \nabla F_{i}(x) + \dots \right)$$

n samples m machines

Synchronized deterministic Gradient Descent


$$\min_{x \in R^p} \left\{ F(x) = \frac{1}{n} \sum_{i=1}^n F_i(x) \right\}$$

n samples m machines

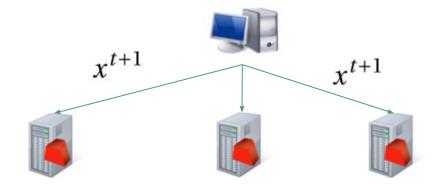
Synchronized deterministic Gradient Descent

$$\min_{x \in R^p} \left\{ F(x) = \frac{1}{n} \sum_{i=1}^n F_i(x) \right\}$$

n samples m machines

Synchronized deterministic Gradient Descent

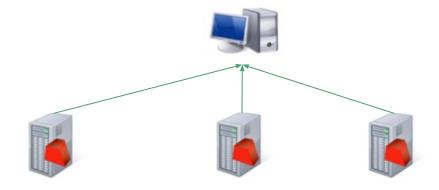
$$\min_{x \in R^p} \left\{ F(x) = \frac{1}{n} \sum_{i=1}^n F_i(x) \right\}$$


$$\sum_{i=1}^{n/m} \nabla F_i(x)$$

$$\frac{1}{n} \sum_{i=1}^n \nabla F_i(x) = \frac{1}{N} \left(\sum_{i=1}^{n/m} \nabla F_i(x) + \sum_{i=n/m+1}^{2n/m} \nabla F_i(x) + \dots \right)$$

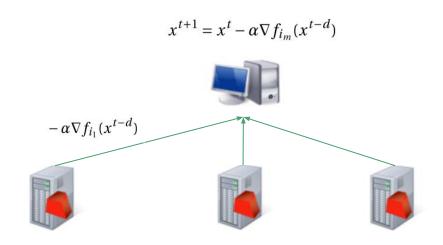
n samples

Synchronized deterministic Gradient Descent

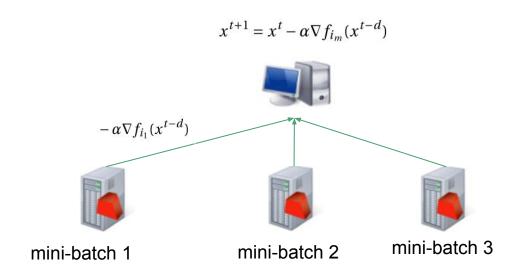

$$\min_{x \in R^p} \left\{ F(x) = \frac{1}{n} \sum_{i=1}^n F_i(x) \right\}$$

- These allow optimal linear speedups
 - You should always consider this first!

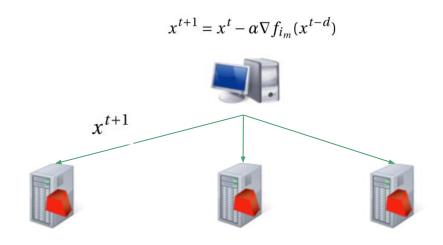
Synchronized deterministic Gradient Descent


$$\min_{x \in R^p} \left\{ F(x) = \frac{1}{n} \sum_{i=1}^n F_i(x) \right\}$$

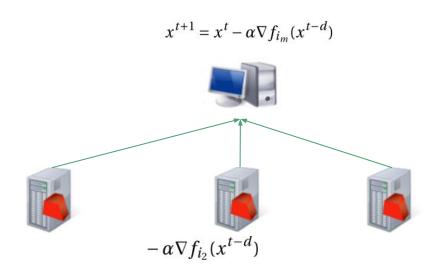
- Issue
 - What if one of the computers is very slow?
 - What if one of the links failed?

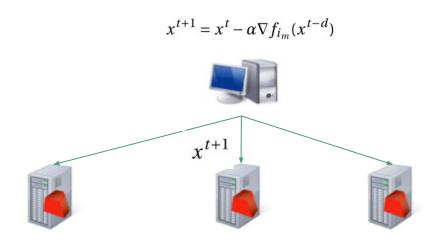

Centralized Gradient descent (HogWild)

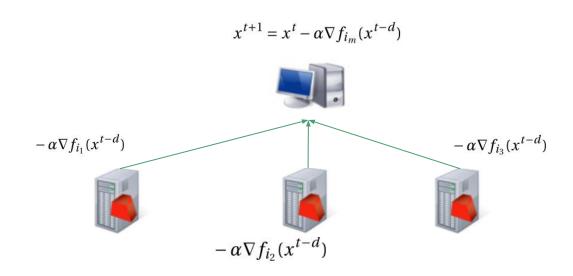
- Update 'x' asynchronously saves a lot of time
- Stochastic gradient method on shared memory

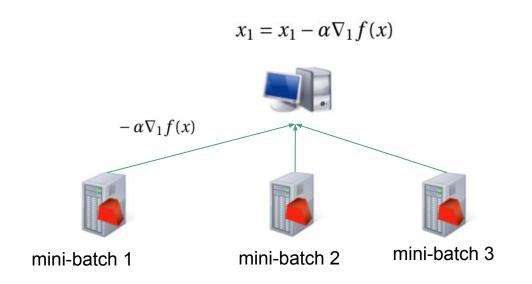


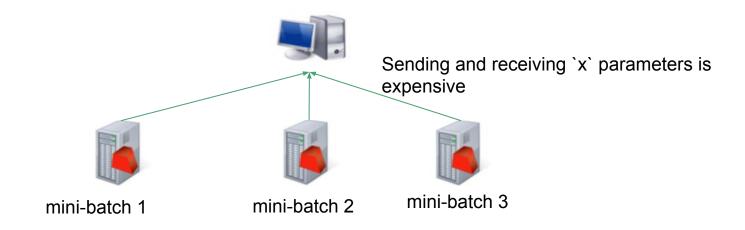
Centralized Gradient descent (HogWild)

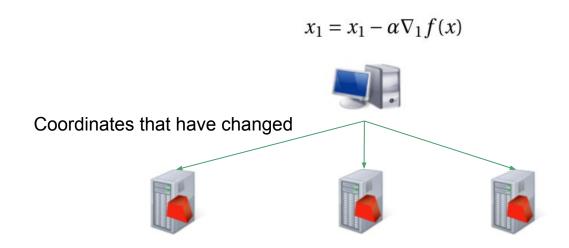

- Update 'x' asynchronously saves a lot of time
- Stochastic gradient method on shared memory

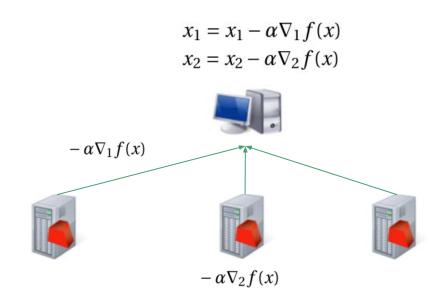

- Update 'x' asynchronously saves a lot of time
- Stochastic gradient method on shared memory

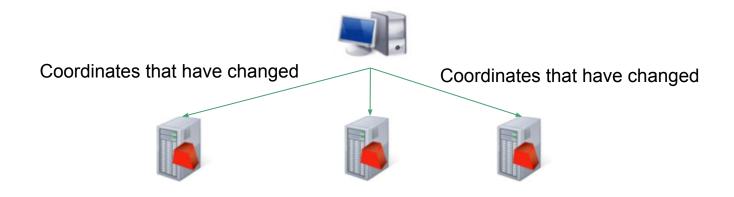

- Update 'x' asynchronously saves a lot of time
- Stochastic gradient method on shared memory


- Update 'x' asynchronously saves a lot of time
- Stochastic gradient method on shared memory


- Update 'x' asynchronously saves a lot of time
- Stochastic gradient method on shared memory


- Communicating parameters 'x' can be expensive
- Use coordinate descent to transmit one coordinate update at a time


Communicating parameters 'x' can be expensive


- Communicating parameters 'x' can be expensive
- Use coordinate descent to transmit one coordinate update at a time

- Communicating parameters 'x' can be expensive
- Use coordinate descent to transmit one coordinate update at a time

- Communicating parameters 'x' can be expensive
- Use coordinate descent to transmit one coordinate update at a time

• Need to decrease step-size for convergence (it's stochastic coordinate descent).

Least square problem

$$f(x) = \frac{1}{2}||Ax - b||^2$$

Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

- Doesn't seem separable at first sight.
 - \circ But, A^i can have many non-zero entries most entries in (Ax b) will be unnecessary

• Least square problem

$$f(x) = \frac{1}{2}||Ax - b||^2$$

Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

Sparse A

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

Coordinates? &?

Coordinate?

Coordinate?

• Least square problem

$$f(x) = \frac{1}{2}||Ax - b||^2$$

Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

Sparse A

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

Coordinates? &?

Coordinate?

Coordinate?

• Least square problem

$$f(x) = \frac{1}{2}||Ax - b||^2$$

Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

Sparse A

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

Coordinates? &?

Coordinate?

Coordinate?

Least square problem

$$f(x) = \frac{1}{2}||Ax - b||^2$$

Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

Sparse A

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

Sample 1

Coordinate 3
Sample 4

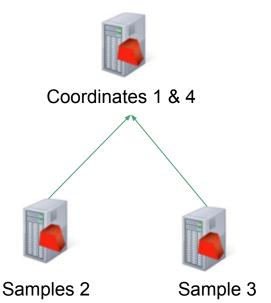
Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

Say, you can only fit one sample in the machine

Coordinates 1 & 4 Samples 2 & 3

Coordinate 2
Sample 1


Coordinate 3
Sample 4

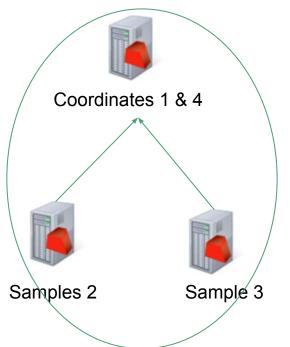
0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

Say, you can only fit one sample in a machine

Coordinate 2 Coo Sample 1 Sa


Coordinate 3
Sample 4

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

Update rule

$$x_i^{t+1} = x_i^t - \alpha A^i (Ax - b)$$

Say, you can only fit one sample in a machine

Coordinate 2
Sample 1

Coordinate 3
Sample 4

Sparse A

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

Mini centralized coordinate descent

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector $|\mathcal{X}_m|$

Sample 1	0	1	0	0
Sample 2	1	0	0	0
Sample 3	1	0	0	1
Sample 4	0	0	1	0

Sample 1	Sample 2	Sample 3	Sample 4
			The state of the s
Machine 1	Machine 2	Machine 3	Machine 4

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector $|\mathcal{X}_{m}|$

$x_1 = ?$	$x_2 = ?$	$x_3 = ?$	$x_4 = ?$
Sample 1	Sample 2	Sample 3	Sample 4
Machine 1	Machine 2	Machine 3	Machine 4

Sample 1	0	1	0	0
Sample 2	1	0	0	0
Sample 3	1	0	0	1
Sample 4	0	0	1	0

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector $|\mathcal{X}_{m}|$

$x_1 = ?$	$x_2 = ?$	$x_3 = ?$	$x_4 = ?$
Sample 1	Sample 2	Sample 3	Sample 4
Machine 1	Machine 2	Machine 3	Machine 4

Sample 1	0	1	0	0
Sample 2	1	0	0	0
Sample 3	1	0	0	1
Sample 4	0	0	1	0

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector X_m

$x_1 = ?$	$x_2 = ?$	$x_3 = ?$	$x_4 = ?$
Sample 1	Sample 2	Sample 3	Sample 4
Machine 1	Machine 2	Machine 3	Machine 4

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0
	1	1 0	1 0 0

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector $|\mathcal{X}_{m}|$

$x_1 = ?$	$x_2 = ?$	$x_3 = ?$	$x_4 = ?$
Sample 1	Sample 2	Sample 3	Sample 4
Machine 1	Machine 2	Machine 3	Machine 4

1			
'	U	0	
0	0	0	
0	0	1	
0	1	0	
	0	0 0	0 0 0

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector $|\mathcal{X}_m|$

$x_1 = ?$	$x_2 = ?$	$x_3 = ?$	$x_4 = ?$
Sample 1	Sample 2	Sample 3	Sample 4
The state of the s			
Machine 1	Machine 2	Machine 3	Machine 4

Sample 1	0	1	0	0
Sample 2	1	0	0	0
Sample 3	1	0	0	1
Sample 4	0	0	1	0

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector $\;\mathcal{X}_{m}\;$

Sample 1	0	1	0	0
Sample 2	1	0	0	0
Sample 3	1	0	0	1
Sample 4	0	0	1	0

$$x_1 = x(2)$$
 $x_2 = x([1,4])$ $x_3 = x([1,4])$ $x_4 = x(3)$
Sample 1 Sample 2 Sample 3 Sample 4

Machine 1 Machine 2 Machine 3 Machine 4

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- **Decentralized Gradient Descent**
 - Each machine has its own data samples
 - Each machine has its own parameter vector X_m
 - **Update rule**

$$x_m = \frac{1}{|\text{nei}(m)|} \sum_{k \in \text{nei}(m)} x_m - \alpha \sum_{i \in k} \nabla f_i(x_m)$$

 $x_3 = x([1,4])$

Sparse A

Sample 1

Sample 2

Sample 3

Sample 4

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

$$x_1 = x(2)$$

communicates with no communication machine 3

machine 2

 $x_2 = x([1,4])$

communicates with machine 2

machine 3

 $x_4 = x(3)$ No communication

machine 4

- Distribute the data across machines.
- We may not want to update a 'centralized' vector x
- Decentralized Gradient Descent
 - Each machine has its own data samples
 - \circ Each machine has its own parameter vector \mathcal{X}_m
 - Update rule

$$x_m = \frac{1}{|\text{nei}(m)|} \sum_{k \in \text{nei}(m)} x_m - \alpha \sum_{i \in k} \nabla f_i(x_m)$$

Sparse A

Sample 1

Sample 2

Sample 3

Sample 4

0	1	0	0
1	0	0	0
1	0	0	1
0	0	1	0

- Similar convergence to the gradient descent with central communication
 - The rate depends on the sparsity of the dataset

Summary

- Using parallel and distributed systems is important for speeding up optimization for big data
- Synchronized Deterministic Gradient Descent
 - Optimization halts with link failure or when a machine is slow at processing its data
- Centralized Asynchronous Gradient Descent
 - Communicating vector 'x' is costly
- Centralized Asynchronous Coordinate descent
 - Centralization causes additional overhead communication
- Decentralized Asynchronous Coordinate descent
 - Helpful for sparse datasets
 - No communication between machines
- Decentralized Gradient descent
 - Helpful for sparse datasets
 - Machines have to communicate with few neighbors only