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Objective function

min f(z),

Assumptions

Gradient Lipschitz continuous
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Strongly convex
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Randomized coordinate descent

E[f(x"™) - fFxHl < (1 - E)[fx") - F(x*)]




Non-strongly Convex optimization

Assumptions

Gradient Lipschitz continuous

M= FE)+VFX) -2+ %y -x)?

Convergence rate

f(x") — f(x*) = O(1/t).

Compared to the strongly convex convergence rate

E[f(x"1) - fFxO] < (1 - £)[f(x") = F(x*)]




Non-strongly Convex optimization

Definition 2 (Restricted secant inequality — RSI(¢)). A function f(z) : R™ — R satisfies the restricted
secant inequality (RSI) with constant v > 0 if it is differentiable and obeys

(VI(x) = VI (@prj) & = Tprj) 2 Vl|z = 2ps |, (7)




Non-Strongly Convex

Objective function

. I\-,I
min f(z),

Assumptions

Lipschitz continuous

F < FRO+VFO(y—0+E(y-0? ey

Y

Restricted secant inequality
(VF(z) — VF(2pri)s T — Tpr) = V||z — pr |,
Randomized coordinate descent

Elf(x"*) - f(xH] = (1 - H)f(xh) - f(x™)]




Invex functions (a generalization of convex function)

Objective function

min f(x),

rER™

Assumptions

Lipschitz continuous

W =FRO+VF)(y—x)+2Qy—x?

Invex function (one global minimum)
Polyak [1963]

IVf(@)* > 2u(f(x) — 7).

This inequality simply requires that the gradient grows faster than a linear
function as we move away from the optimal function value.
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Invex functions (a generalization of convex function)

Objective function

min f(z),

Assumptions

Lipschitz continuous

W =FRO+VF)(y—x)+2Qy—x?

Polyak [1963] - for invex functions where this holds
2 Venn diagram

IV (@)I* > 2u(f(z) — 7).

Randomized coordinate descent

E[f (™) = fx)] < A = £ [f(x") = f(x*)]



Non-convex functions
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Strategy 1. local optimization of the non-convex function



Non-convex functions

local maxima

Local minima

Global minimum

Assumptions for local non-convex optimization

Lipschitz continuous Locally convex

fW = FO+VF)(y—x)+5(y-x? IV f(@)]]* > 2u(f(z) — f*).



Non-convex functions

Local randomized coordinate descent

local maxima
Elf(x" - fxhl=1- %)[f(xt) — f(x™)]

Local minima

Global
minimum

Strategy 1. local optimization of the non-convex function
All convex functions rates apply.



Non-convex functions

local maxima

Local minima

Global minimum

Strategy 1. local optimization of the non-convex function
Issue: dealing with saddle points



Non-convex functions

Local minima

Global minimum

Strategy 2: Global optimization of the non-convex function
Issue: Exponential number of saddle points



Local non-convex optimization

® Gradient Descent
o  Difficult to define a proper step size

x*l=xt—aVf(xh

® Newton method

o Newton method solves the slowness problem by rescaling the gradients in
each direction with the inverse of the corresponding eigenvalues of the
hessian

o  can result in moving in the wrong direction (negative eigenvalues)

xt+1 — xt _ vf(xt)v2f(xt)—l

® Saddle-Free Newton’s method
o rescales gradients by the absolute value of the inverse Hessian and the
Hessian’s Lanczos vectors.




Local non-convex optimization /

® Random stochastic gradient descent
o  Sample noise r uniformly from unit sphere
o  Escapes saddle points but step size is difficult to determine

xIt = xt —a[Vf(xh) +7]

® Cubic regularization [Nesterov 2006]

Gradient Lipschitz continuous

W= +VF)(y—x+5(y—x?

Hessian Lipschitz continuous
f(xt+l) < f(xt) +Vf(xt)(xt+l t) s V2 f(x )( t+1 _ xt)z 4 %lxt+l _ xt|3

Then there exist constants €, § = 0 such that whenever a point x; appears to be in a set

= {x:|lx —Xx|| e, f(x) = f(X)} (forinstance, if x; = X), then the next point x; 1|
leaves the set Q:

fxig1) < f(x) —4.



Local non-convex optimization

® Random stochastic gradient descent
o Sample noise r uniformly from unit sphere
o  Escapes saddle points but step size is difficult to determine

xt = xt— @[V f(xh) +7]

® Momentum
o can help escape saddle points (rolling ball)

vt+1 — pvt_ avf(xt)

r+1 1

xh = xt 4 ptt




Global non-convex optimization

® Matrix completion problem [De Sa et al. 2015]
minimize B [[|A - X |[,]
subjectto X € R, rank (X) < p, X > 0,

® Applications (usually for datasets with missing data)
o matrix completion
o Image reconstruction
o recommendation systems.



Global non-convex optimization

Matrix completion problem [De Sa et al. 2015]
minimize B [[|A - X |[,]
subjectto X € R"" rank (X) < p, X > 0,

Reformulate it as (unconstrained non-convex problem)
minimize E [[|4 - vy7|[;]
subjectto Y € R"*? '

Gradient descent

Yir1 = Vi + i (A — BYY) Vi



Global non-convex optimization

® Reformulate it as (unconstrained non-convex problem)
g~ = 2
minimize E [”A — YYT”F]
subject to Y € R"*?

® Gradient descent
Yinn=Yr+ o (Ak - Y;.-Yf) Y;.

® Using the Riemannian manifold, we can derive the following

Yit1 = (I + meAr) Ya

® This widely-used algorithm converges globally, using only random initialization



Convex relaxation of non-convex functions optimization

® Convex Neural Networks [Bengio et al. 2006]

o Single-hidden layer network

L(x,y) = 511 f(x,y) - bl[*

flx,y)=y-g(Ax)

Starting pt.

[ ocal minima

Global minima

original neural networks non-convex problem



Convex relaxation of non-convex functions optimization

® Convex Neural Networks [Bengio et al. 2006]
o Single-hidden layer network

L(x,y) = 511 f(x,y) - bl[* fl,y) =y -g(Ax)

o Use alternating minimization

Le(x) = 31 fe(x) — bl? folx) = h(v) - x

Ly(v) = 3|lh(v) = fe ()2 h(v) = g(Av)

o Potential issues with the activation function



Bayesian optimization (global non-convex optimization)

® Typically used for finding optimal parameters
o  Determining the step size of # hidden layers for neural networks
o The parameter values are bounded ?

® Other methods include sampling the parameter values random uniformly
o  Grid-search

observation (x) objective fin (f(-)

¥ acquisition max

acquisition function (u(-))

t=3

new observation (x,)

posterior mean (p(-))

posterior uncertainty
(u(-)£a(-)) v




Bayesian optimization (global non-convex optimization)

® Fit Gaussian process on the observed data (purple shade)
o Probability distribution on the function values

objective fn (f(})
observation (x)

acquisition max

acquisition function (u())




Bayesian optimization (global non-convex optimization)

® Fit Gaussian process on the observed data (purple shade)
o Probability distribution on the function values

® Acquisition function (green shade)

o a function of
B the objective value (exploitation) in the Gaussian density function; and

B the uncertainty in the prediction value (exploration).

objective fn (f(-)) new observation (x, )

observation (x)

acquisition max

acquisition function (u())




Bayesian optimization

® Slower than grid-search with low level of smoothness (illustrate)
® Faster than grid-search with high level of smoothness (illustrate)

tm3

new observation (x,)




Bayesian optimization

® Slower than grid-search with low level of smoothness (illustrate)
® Faster than grid-search with high level of smoothness (illustrate)

Improves error from O(1/t/9) to O(1/t"/9)

/ \

Grid-search Bayesian optimization

tm3

new observation (x,)




Bayesian optimization

® Slower than grid-search with low level of smoothness (illustrate)
® Faster than grid-search with high level of smoothness (illustrate)

A measure of smoothness
Improves error from O(1/t9) to O(l/

/ \

Grid-search Bayesian optimization

t=3

new observation (x,)




Summary

Non-convex optimization

® Strategy 1. Local non-convex optimization
o  Convexity convergence rates apply
o Escape saddle points using, for example, cubic regularization and saddle-free newton
update
® Strategy 2: Relaxing the non-convex problem to a convex problem
o  Convex neural networks
® Strategy 3: Global non-convex optimization
o  Bayesian optimization
o Matrix completion



