
Non-convex optimization

Issam Laradji



Strongly Convex 

f(x)

x

Objective function



Strongly Convex 

Assumptions
f(x)

x

Objective function

Gradient Lipschitz continuous

Strongly convex



Strongly Convex 

Assumptions
f(x)

x

Objective function

Gradient Lipschitz continuous

Strongly convex

Randomized coordinate descent
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Invex functions (a generalization of convex function)
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This inequality simply requires that the gradient grows faster than a linear 
function as we move away from the optimal function value. 
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Assumptions for local non-convex optimization

Lipschitz continuous Locally convex 
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Global 
minimum 
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Strategy 1: local optimization of the non-convex function

  All convex functions rates apply.

Local randomized coordinate descent
local maxima



Non-convex functions

Global minimum 
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Strategy 1: local optimization of the non-convex function

  Issue: dealing with saddle points

local maxima



Non-convex functions
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Strategy 2: Global optimization of the non-convex function

    Issue: Exponential number of saddle points



Local non-convex optimization
● Gradient Descent

○ Difficult to define a proper step size

● Newton method
○ Newton method solves the slowness problem by rescaling the gradients in 

each direction with the inverse of the corresponding eigenvalues of the 
hessian

○ can result in moving in the wrong direction (negative eigenvalues)

● Saddle-Free Newton’s method
○ rescales gradients by the absolute value of the inverse Hessian and the 

Hessian’s Lanczos vectors.



Local non-convex optimization
● Random stochastic gradient descent

○ Sample noise r uniformly from unit sphere
○ Escapes saddle points but step size is difficult to determine

● Cubic regularization [Nesterov 2006]

Gradient Lipschitz continuous

Hessian Lipschitz continuous



Local non-convex optimization
● Random stochastic gradient descent

○ Sample noise r uniformly from unit sphere
○ Escapes saddle points but step size is difficult to determine

● Momentum
○ can help escape saddle points (rolling ball)



● Matrix completion problem  [De Sa et al. 2015]

Global non-convex optimization

● Applications (usually for datasets with missing data)
○ matrix completion 
○ Image reconstruction
○ recommendation systems.



● Matrix completion problem [De Sa et al. 2015]

● Reformulate it as (unconstrained non-convex problem)

● Gradient descent
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● Reformulate it as (unconstrained non-convex problem)

● Gradient descent

● Using the Riemannian manifold, we can derive the following

● This widely-used algorithm converges globally, using only random initialization

Global non-convex optimization



Convex relaxation of non-convex functions optimization

● Convex Neural Networks [Bengio et al. 2006]
○ Single-hidden layer network

original neural networks non-convex problem



Convex relaxation of non-convex functions optimization

● Convex Neural Networks [Bengio et al. 2006]
○ Single-hidden layer network

○ Use alternating minimization 

○ Potential issues with the activation function



Bayesian optimization (global non-convex optimization)

● Typically used for finding optimal parameters 
○ Determining the step size of # hidden layers for neural networks
○ The parameter values are bounded ?

● Other methods include sampling the parameter values random uniformly
○ Grid-search



Bayesian optimization  (global non-convex optimization)

● Fit Gaussian process on the observed data (purple shade)
○ Probability distribution on the function values



Bayesian optimization (global non-convex optimization)

● Fit Gaussian process on the observed data (purple shade)
○ Probability distribution on the function values

● Acquisition function (green shade)
○ a function of 

■ the objective value (exploitation) in the Gaussian density function; and
■ the uncertainty in the prediction value (exploration).
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● Faster than grid-search with high level of smoothness (illustrate)
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Bayesian optimization

● Slower than grid-search with low level of smoothness (illustrate)
● Faster than grid-search with high level of smoothness (illustrate)

Grid-search Bayesian optimization

A measure of smoothness



Summary

Non-convex optimization 

● Strategy 1: Local non-convex optimization
○ Convexity convergence rates apply

○ Escape saddle points using, for example, cubic regularization and saddle-free newton 

update

● Strategy 2: Relaxing the non-convex problem to a convex problem
○ Convex neural networks

● Strategy 3: Global non-convex optimization
○ Bayesian optimization
○ Matrix completion


