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The Monte Carlo Method

Refers to the use of random samples to do (approximate) computations.

e Typical supervised learning Dy = {(x;, yi)}

N

posterior: p(9] D) o< p(0) [ | (il 0)
i=1

posterior predictive: p(y|x, Dy) = /p(y!x, 0)p(0|Dy)do

» MAP:

~

6 = argmaxp(0|Dy),  p(ylx, D) = p(y|x,0)
» Monte Carlo integration:

{(6°Y2_, % p(6]Dn),  ply|x, D) =

S
Z y|x, 6%)

Ln\r—‘
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Theoretical Justification for Monte Carlo Integration

Theorem (Strong Law of Large Numbers)
IF X1, ..., Xn 1 with E[X(] = p,

1 n
— ZX,- — [t a.5.
e

p| < oo then

o Take leap of faith: %27:1 Xi~pu
e By definition of expectation' 1 Z," L Xi = [ xm(x)dx
o More generally: 157 g(X;) ~ [ g(x)m(x)dx



Law of Large Numbers
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Generating samples (1D)

@ Inverse Transform Sampling

» Want a sample # ~ F, where F is the CDF.

N(0,1) CDF
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Inverse Transform Algorithm

1. Sample U ~ Unif(0,1).
2. Compute sample as 0 = F1(U).

N(0,1) Inverse CDF
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Generating samples (1D)

Suppose we only know the density function up to a normalizing constant.

e.g. p(0|Dn) o p(0) T, p(yilxi,0) = 7*(9)

@ Geometric interpretation of sampling: throwing darts at area under

.

@ Samples are generated in proportion to height of the curve.

=2 J



Accept-Reject Methods

@ Rejection Sampling
» Requires a density g such that 7%(0) < kq(8).
» Area under 7* is still uniformly sampled, but must retry if the sample is
above the curve.

rejecte

kq(0)

rejecte 7™(8)

rejecte

laccept

Y
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Accept-Reject Methods

@ Rejection Sampling

» Requires a density g such that 7*(0) < kq(6).

Rejection Sampling Algorithm

1. Sample Y ~gq, U~ Unif(0,1)

2. Accept =Y if U <7"(Y)/kq(Y)
3. Otherwise, retry.
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Example 1: Computing Z with Rejection Sampling
Suppose we have a half-unit circle as our density.
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Fraction of samples under the curve converges to é, where A = 7/2.
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Example 2: Sampling from posterior using prior

We have in supervised setting with discretel random variables:

N

p(61Dn) o p(0) [ | p(yilxi, 0) < p(6)
i=1

So we can do rejection sampling with

N

= p(8) [ [ p(vilxi, 6)

i=1

Using p(#) as the upper bound.
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Accept-Reject Methods

@ Envelope Rejection Sampling

» Require additional lower bound: g(0) < 7*(8) < kq().

» Useful when g is easier to compute than 7*.

Envelope Accept-Reject Algorithm

1. Sample Y ~q, U~ Unif(0,1)

2. Accept =Y if U <g(Y)/kq(Y);
otherwise, accept =Y if U < 7*(Y)/kq(Y)
otherwise, retry.
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Accept-Reject Methods

o Adaptive Rejection Sampling

» Requires h = log 7* to be a concave function.

» Adaptively constructs the upper and lower bounds using only
evaluations of 7*.

Adaptive Bounds

Let S, = {xi}7_; be a set of points in the support of 7* where x; < xj41.
Let ¢; be the line through (x;, h(x;)) and (xi+1, h(Xi+1))-
Then ¢; is below h in [x;, xj+1] and above h outside this interval.
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Accept-Reject Methods

o Adaptive Rejection Sampling
» For x € [x;, x;11], if we define

ha(x) = min{l;_1(x), liz1(x)} and  h,(x) = £i(x)
Then the envelopes are

ha(x) < h(x) < ha(x)

U4(x)
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Accept-Reject Methods

@ Adaptive Rejection Sampling
» The envelopes for the log-density are h,(x) < h(x) < h,(x)

» Therefore, for f,(6) := exp(h,(0)) and f,(0) := exp(h,(0))
£4(0) < 7(0) < Fo(x) =: Zgn(0)

Where g, is a density.

> q, is piecewise exponential and can be sampled using two steps.

(stratified sampling method)

* Sample from multinomial distribution to determine a " piece”.
* Sample from the truncated exponential distribution.
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Problems with Rejection Sampling

@ Accept-Reject methods do not scale well with dimensions due to curse
of dimensionality. (The ARS algorithm only works in 1 dimensions.)
» Many multivariate sampling problems can be decomposed into
univariate sampling steps. (eg. acyclic belief networks)
» Gibbs sampling (MCMC) uses only univariate sampling steps.
» But many other Monte Carlo methods can used to tackle the problem
of “rare event simulation”, such as importance sampling.

@ Accept-Reject methods require the knowledge of an upper bound
kq(0).

» Importance Sampling has a weaker requirement.
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Ancestral Sampling

Here's a brief mention of ancestral sampling.

@ Suppose we have a Bayesian network (directed acyclic).

[Sprinkler]_[ Rain j

@ We can sample from the joint distribution using chain rule

p(X17 cee aXn) = p(Xl)p(X2|X1)p(X3’X27 Xl) o p(Xn‘anlv B 7X1)

p(X) = H p(Xi|parents(X;))

1

(Not very useful if we want to condition on some observations.)
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Monte Carlo Integration - Importance Sampling

@ Back to the law of large numbers.
» Using samples X; i m, we can estimate any integral by putting it in the
form of E[g(X)] for any function g.

2o~ [ gbm(xdx
i=1

But m(x) may be difficult to analyze.
> Idea: sample Y; from a different (biasing) distribution with density f
and add weights to the samples based on how likely this sample comes

from m(x).

m(x)

},;g(y'):g;’; %/g(x)mf(x)dx:/g(x)ﬂ—(x)dx

» Importance Sampling only requires that f(x) > 0 whenever
g(x)(x) #0.
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Self-normalized Importance Sampling

o What if we only know 7*7

> Then 2377 g(V)) 93 ~ Z [ g(x)m(x)dx
» We can construct an estimator for Z...

I~ (V) _ [ Zn(x) B
" 2 V) = [ Gy e = 2

» Thus... %)
S &) Ry (Om(x)d
1 Z x(Y) ~ g ﬂ-
i=1 F(v))
» Note: f can also be un-normalized.

v

v

Cannot be said to be unbiased.

Requires slightly stronger condition: f(x) > 0 whenever 7(x) > 0.
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Rao-Blackwellization

e What if we only cared about E[h(X)] when our sampling method
produces (X, Y)? Naive method is to throw out Y.

@ eg. Y are samples from g in rejection sampling and X are samples
that pass the acceptance step. (note X depends on Y and some
other r.v.'s)

@ Rao-Blackwellization is a method to produce a lower-variance
estimator by reducing the number of random variables that an
estimator depends on.

Theorem (Law of Total Variance)

Var(8) = E[Var(4|Y)] + Var(E[d]Y])
= Var(9) > Var(E[0|Y])

o If E[d] is the quantity we wish to approximate, then we can use
E[d|Y] instead of § to produce a better approximator.

@ *If § is a function of Y plus some other random variables, then
computing E[d|Y] is equivalent to marginalizing out the other
random variables. 2024



Rao-Blackwellized Accept-Reject Estimator

@ Recall in the rejection sampling algorithm, if we want to accept m
samples, we need to actually sample N times, satisfying

N N-1
m= Z ly<w, and m—1= Z Tu<w,
i=1 i=1

where w; = 7(Y;)/kq(Y;)

@ The rejection sampling estimator can be written as

N
1 1
01 = Ezh(Xi) = m; ]lU/SWih(Y")

Which depends on N, Uy,...,Un, Y1,..., YnN.
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Rao-Blackwellized Accept-Reject Estimator

@ The rejection sampling estimator
LN

01 = m Zl ]lUiSWih(Yi)
=

@ Reduction in variance can be achieved with the conditional
expectation (integrate out U;'s)

N
1
6= [mz;]lu‘wfh(y") N,Yi,...,Yn
1=

N
1
== > E[ly<wIN, Y1,..., Yalh(Y7)
i=1

1 N
= m ZPih(Yi)
i=1

e Computation of p; is omitted but requires O(/N?) complexity.

@ 0, effectively replaced U;, N with conditional expectations.



Rao-Blackwellized Accept-Reject Estimator

@ The estimator §; is often compared to the importance sampling
estimator if the random nature of N and its dependence on the
samples are ignored:

E Y., Y

1 N
E z_; ILU:‘SW,'h(Yi)

1 N
= m ZE[HU,‘SW;|Y17 SRR YN]h(Yi)
i=1
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