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The Monte Carlo Method
Refers to the use of random samples to do (approximate) computations.

Typical supervised learning DN = {(xi , yi )}

posterior: p(θ|DN) ∝ p(θ)
N∏
i=1

p(yi |xi , θ)

posterior predictive: p(y |x ,DN) =

∫
p(y |x , θ)p(θ|DN)dθ

I MAP:
θ̂ = arg max

θ
p(θ|DN), p(y |x ,DN) ≈ p(y |x , θ̂)

I Monte Carlo integration:

{θs}Ss=1
iid∼ p(θ|DN), p(y |x ,DN) ≈ 1

S

S∑
s=1

p(y |x , θs)
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Theoretical Justification for Monte Carlo Integration

Theorem (Strong Law of Large Numbers)

If X1, . . . ,Xn
iid∼ π with E[X1] = µ, |µ| <∞ then

1

n

n∑
i=1

Xi → µ a.s.

Take leap of faith: 1
n

∑n
i=1 Xi ≈ µ

By definition of expectation: 1
n

∑n
i=1 Xi ≈

∫
xπ(x)dx

More generally: 1
n

∑n
i=1 g(Xi ) ≈

∫
g(x)π(x)dx
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Law of Large Numbers
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Generating samples (1D)

Inverse Transform Sampling
I Want a sample θ ∼ F , where F is the CDF.

Inverse Transform Algorithm

1. Sample U ∼ Unif(0, 1).
2. Compute sample as θ = F−1(U).
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Generating samples (1D)
Suppose we only know the density function up to a normalizing constant.

π(θ) =
π∗(θ)

Z

e.g. p(θ|DN) ∝ p(θ)
∏N

i=1 p(yi |xi , θ) = π∗(θ)

Geometric interpretation of sampling: throwing darts at area under
π∗.

Samples are generated in proportion to height of the curve.
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Accept-Reject Methods

Rejection Sampling
I Requires a density q such that π∗(θ) ≤ kq(θ).
I Area under π∗ is still uniformly sampled, but must retry if the sample is

above the curve.
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Accept-Reject Methods

Rejection Sampling
I Requires a density q such that π∗(θ) ≤ kq(θ).

Rejection Sampling Algorithm

1. Sample Y ∼ q, U ∼ Unif(0, 1)
2. Accept θ = Y if U ≤ π∗(Y )/kq(Y )
3. Otherwise, retry.
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Example 1: Computing Z with Rejection Sampling
Suppose we have a half-unit circle as our density.

We can get the area under the function from rejection sampling.

Fraction of samples under the curve converges to A
2 , where A = π/2.
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Example 2: Sampling from posterior using prior

We have in supervised setting with discrete1 random variables:

p(θ|DN) ∝ p(θ)
N∏
i=1

p(yi |xi , θ)︸ ︷︷ ︸
≤1

≤ p(θ)

So we can do rejection sampling with

π∗ = p(θ)
N∏
i=1

p(yi |xi , θ)

Using p(θ) as the upper bound.
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Accept-Reject Methods

Envelope Rejection Sampling
I Require additional lower bound: g(θ) ≤ π∗(θ) ≤ kq(θ).
I Useful when g is easier to compute than π∗.

Envelope Accept-Reject Algorithm

1. Sample Y ∼ q, U ∼ Unif(0, 1)
2. Accept θ = Y if U ≤ g(Y )/kq(Y );

otherwise, accept θ = Y if U ≤ π∗(Y )/kq(Y )
otherwise, retry.
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Accept-Reject Methods

Adaptive Rejection Sampling
I Requires h = log π∗ to be a concave function.
I Adaptively constructs the upper and lower bounds using only

evaluations of π∗.

Adaptive Bounds

Let Sn = {xi}ni=1 be a set of points in the support of π∗ where xi < xi+1.
Let `i be the line through (xi , h(xi )) and (xi+1, h(xi+1)).
Then `i is below h in [xi , xi+1] and above h outside this interval.
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Accept-Reject Methods
Adaptive Rejection Sampling

I For x ∈ [xi , xi+1], if we define

hn(x) = min{`i−1(x), `i+1(x)} and hn(x) = `i (x)

Then the envelopes are

hn(x) ≤ h(x) ≤ hn(x)
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Accept-Reject Methods

Adaptive Rejection Sampling
I The envelopes for the log-density are hn(x) ≤ h(x) ≤ hn(x)

I Therefore, for f n(θ) := exp(hn(θ)) and f n(θ) := exp(hn(θ))

f n(θ) ≤ π∗(θ) ≤ f n(x) =: Zqn(θ)

Where qn is a density.

I qn is piecewise exponential and can be sampled using two steps.
(stratified sampling method)

F Sample from multinomial distribution to determine a ”piece”.
F Sample from the truncated exponential distribution.
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Problems with Rejection Sampling

Accept-Reject methods do not scale well with dimensions due to curse
of dimensionality. (The ARS algorithm only works in 1 dimensions.)

I Many multivariate sampling problems can be decomposed into
univariate sampling steps. (eg. acyclic belief networks)

I Gibbs sampling (MCMC) uses only univariate sampling steps.
I But many other Monte Carlo methods can used to tackle the problem

of “rare event simulation”, such as importance sampling.

Accept-Reject methods require the knowledge of an upper bound
kq(θ).

I Importance Sampling has a weaker requirement.
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Ancestral Sampling

Here’s a brief mention of ancestral sampling.

Suppose we have a Bayesian network (directed acyclic).

We can sample from the joint distribution using chain rule

p(X1, . . . ,Xn) = p(X1)p(X2|X1)p(X3|X2,X1) · · · p(Xn|Xn−1, . . . ,X1)

p(X ) =
∏
i

p(Xi |parents(Xi ))

(Not very useful if we want to condition on some observations.)
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Monte Carlo Integration - Importance Sampling

Back to the law of large numbers.

I Using samples Xi
iid∼ π, we can estimate any integral by putting it in the

form of E[g(X )] for any function g .

1

n

n∑
i=1

g(Xi ) ≈
∫

g(x)π(x)dx

But π(x) may be difficult to analyze.
I Idea: sample Yi from a different (biasing) distribution with density f

and add weights to the samples based on how likely this sample comes
from π(x).

1

n

n∑
i=1

g(Yi )
π(Yi )

f (Yi )
≈
∫

g(x)
π(x)

f (x)
f (x)dx =

∫
g(x)π(x)dx

I Importance Sampling only requires that f (x) > 0 whenever
g(x)π(x) 6= 0.

18 / 24



Self-normalized Importance Sampling

What if we only know π∗?

I Then 1
n

∑n
i=1 g(Yi )

π∗(Yi )
f (Yi )

≈ Z
∫
g(x)π(x)dx

I We can construct an estimator for Z ...

1

n

n∑
i=1

π∗(Yi )

f (Yi )
≈
∫

Zπ(x)

f (x)
f (x)dx = Z

I Thus...
1
n

∑n
i=1 g(Yi )

π∗(Yi )
f (Yi )

1
n

∑n
i=1

π∗(Yi )
f (Yi )

≈
∫

g(x)π(x)dx

I Note: f can also be un-normalized.
I Requires slightly stronger condition: f (x) > 0 whenever π(x) > 0.
I Cannot be said to be unbiased.
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Rao-Blackwellization
What if we only cared about E[h(X )] when our sampling method
produces (X ,Y )? Naive method is to throw out Y .
eg. Y are samples from q in rejection sampling and X are samples
that pass the acceptance step. (note X depends on Y and some
other r.v.’s)
Rao-Blackwellization is a method to produce a lower-variance
estimator by reducing the number of random variables that an
estimator depends on.

Theorem (Law of Total Variance)

Var(δ) = E[Var(δ|Y )] + Var(E[δ|Y ])
=⇒ Var(δ) ≥ Var(E[δ|Y ])

If E[δ] is the quantity we wish to approximate, then we can use
E[δ|Y ] instead of δ to produce a better approximator.
* If δ is a function of Y plus some other random variables, then
computing E[δ|Y ] is equivalent to marginalizing out the other
random variables. 20 / 24



Rao-Blackwellized Accept-Reject Estimator

Recall in the rejection sampling algorithm, if we want to accept m
samples, we need to actually sample N times, satisfying

m =
N∑
i=1

1Ui≤wi
and m − 1 =

N−1∑
i=1

1Ui≤wi

where wi = π(Yi )/kq(Yi )

The rejection sampling estimator can be written as

δ1 =
1

m

m∑
i=1

h(Xi ) =
1

m

N∑
i=1

1Ui≤wi
h(Yi )

Which depends on N,U1, . . . ,UN ,Y1, . . . ,YN .
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Rao-Blackwellized Accept-Reject Estimator
The rejection sampling estimator

δ1 =
1

m

N∑
i=1

1Ui≤wi
h(Yi )

Reduction in variance can be achieved with the conditional
expectation (integrate out Ui ’s)

δ2 = E

[
1

m

N∑
i=1

1Ui≤wi
h(Yi )

∣∣∣∣∣N,Y1, . . . ,YN

]

=
1

m

N∑
i=1

E[1Ui≤wi
|N,Y1, . . . ,YN ]h(Yi )

=
1

m

N∑
i=1

ρih(Yi )

Computation of ρi is omitted but requires O(N2) complexity.
δ2 effectively replaced Ui ,N with conditional expectations. 22 / 24



Rao-Blackwellized Accept-Reject Estimator

The estimator δ2 is often compared to the importance sampling
estimator if the random nature of N and its dependence on the
samples are ignored:

E

[
1

m

N∑
i=1

1Ui≤wi
h(Yi )

∣∣∣∣∣Y1, . . . ,YN

]

=
1

m

N∑
i=1

E[1Ui≤wi
|Y1, . . . ,YN ]h(Yi )

=
1

m

N∑
i=1

π(Yi )

kq(Yi )
h(Yi )(

v.s.
1

N

N∑
i=1

π(Yi )

q(Yi )
h(Yi )

)
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