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Coordinate Descent in 2D

o Contours of a function F : R?> — IR.
e Goal: Find the minimizer of F'.

2/38



Coordinate Descent in 2D

o Contours of a function F : R?> — IR.
e Goal: Find the minimizer of F'.

2/38



Coordinate Descent in 2D

o Contours of a function F : R?> — IR.
e Goal: Find the minimizer of F'.

2/38



Coordinate Descent in 2D

o Contours of a function F : R?> — IR.
e Goal: Find the minimizer of F'.

2/38



Coordinate Descent in 2D

o Contours of a function F : R?> — IR.
e Goal: Find the minimizer of F'.

2/38



Coordinate Descent

¢ Update a single coordinate at each iteration,

k'H — J: akai(xk)

e Easy to implement, low memory requirements, cheap iteration costs.
e Suitable for large-scale optimization (dimension n is large):

e Certain smooth (unconstrained) problems.
e Non-smooth problems with separable constraints/regularizers.

e e.g., ¢1-regularization, bound constraints
* Faster than gradient descent if iterations »n times cheaper.
— Adaptable to distributed settings.

— For truly huge-scale problems, it is absolutely necessary to parallelize.



Problem

e Consider the optimization problem

min F(z) i= f(z) +g(e),

where

e fis loss function — convex (smooth or nonsmooth)
e g is regularizer — convex (smooth or nonsmooth), separable

38



Regularizer Examples

n
g(z) = Zgi(xi), = (z1,20,...,20)7
=1

No regularizer: g;(z;) =0
Weighted L1-norm: g;(z;) = \i|z]
Weighted L2-norm: gz(a:z) = )\2(1'1)2

Box constraints: g;(z;) =

——

()\i > 0)
(/\i > 0)

0, z; € X,

+o00, otherwise.

< eg., LASSO

+ e.g., SVM dual
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Name

Loss Examples

f(z)

References

Quadratic loss
Logistic loss
Square hinge loss

L-infinity
L1-regression
Exponential loss

sllAz =yl = § 30 (A — y;)?
>0t log(1 + exp(—y;Aj.w))
%(max{(], 1-— yjAj:x})Q)

A7 — ylloo = maxi<j<m [Aj.7 — y;]
Az =yl = 7%, |Aj0 — yj
log (5 27 exp(y;4;))

Bradley et al., 2011,
Richtarik & Takag¢, 2011b, 2013a,

Takac et al., 2013

Fercoq & Richtarik, 2013

38



Parallel Coordinate Descent

e Embarrassingly parallel if objective is separable.
— Speedup equal to number of processors, .
e For partially-separable objectives:

« Assign i processor task of updating i component of .
« Each processor communicates respective z;" to processors that require it.
« The i processor needs current value of z; only if V, f or V2 f depends on z;.

— Parallel implementations suitable when dependency graph is sparse.
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Dependency Graph

e Given a fixed serial ordering of updates, those in red can be done in parallel.

Fig. 3. The data dependencies in a Gauss-5eidel iteration
for a different updating order.

Fic. 2. The data dependencies in a Gauss-Seidel iteration

Fic. |. A dependency graph.

— (4,7) is an arc of Update order: {1,2,3,4} Better update order: {1,3,4,2}
the dependency graph
k+1 k _k R kK
iff update function h; zy = hi(zr, z3) zi" = ha(z71, 23)
depends on z; oh T = by (2T k) ah T = hg(ah, b, k)
it = hg (a5 2h ) it = hy(af, 2h)
i = ha(eyt af) 3" = ha(2i T, 23)
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Parallel Coordinate Descent

e Synchronous parallelism:
o Divide iterate updates between processors, followed by synchronization step.
o Very slow for large-scale problems (wait for slowest processor).

e Asynchronous parallelism:

e Each processor has access to =, chooses index i, loads components of z that
are needed to compute the gradient component V; f(z), then updates the ith
component ;.

o No attempt to coordinate or synchronize with other processors.
e Always using ‘stale’ x: convergence results restrict how stale.
— Many numerical results actually use asynchronous implementation, ignore
synchronization step required by theory.
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Totally Asynchronous Algorithm

Definition: An algorithm is totally asynchronous if

@ eachindex: € {1,2,...,n} of z is updated at infinitely many iterations, and
®if uj’? denotes the iteration at which component j of the vector #* was last
updated, then v — cc as k — oo forall j = 1,2,...,n.

Algorithm 7 Asynchronous Coordinate Descent for (1)

Set k + 0 and chocse 20 € R™;

repeat
Choose index iy € {1,2....,n};
2Ht g g [V ()], e, for some ay > 0
ke k4 1;

until termination test satisfied;

— No condition on how stale z; is, just requires that it will be updated eventually.
Theorem (Bertsekas and Tsitsiklis, 1989)
Suppose a mapping T'(z) := x — aV f(x) for some « > 0 satisfies
|IT(x) — "o < ||z — 2%||ce, forsomen e (0,1).

Then if we set oy, = a in Algorithm 7, the sequence {z*} converges to z*. 1038



Partly Asynchronous Algorithm

« No convergence rate for totally asynchronous, given weak assumptions on z*.

e /- contraction assumption on mapping T is quite strong.

e Liu et al. (2015) assume no component of #* older than nonnegative integer 7
(maximum delay) at any k.
o 7 related to number of processors 7 (indicator of potential parallelism)
o If all processors complete updates at approx same rate, 7 ~ c¢r for some positive
integer c.
— Linear convergence if “essential strong convexity” holds.

— Sublinear convergence for general convex functions.
— Near-linear speedup if number of processors is:

e O(n'/?) in unconstrained optimization.

e O(n'/*) in the separable-constrained case.
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Question

Under what structural assumptions does
parallelization lead to acceleration?

12/38



Convergence of Randomized Coordinate Descent

In IR™, randomized coordinate descent with uniform selection requires:

O(n x &(e)) iterations

Strong convex F: {(e) = log (1)

Smooth, or simple nonsmooth F: ¢(e) = 1

‘Difficult’ nonsmooth F: {(e) = 5

— When dealing with big data, we only care about n.
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The Parallelization Dream

Serial Parallel
(1 coordinate per iteration) (7 coordinates per iteration)
O(n x &(e€)) iterations = O (2 x (e)) iterations

e What do we actually get?
0 (”5 )
-
e Want g = O(1).

— Depends on extent to which we can add up individual updates.
— Properties of F, select of coordinates at each iteration.
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Naive Parallelization

e Consider the function f(z1,x2) = (z1 + 22 — 1)?
e Just compute for more/all coordinates and then add up the updates.

f(1,1) =1
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Naive Parallelization

e Consider the function f(z1,z9) = (z1 + =

ng the updates?? "’
e %
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Naive Parallelization










Averaging may be too conservative...

e Consider the function f(z) = (x1 — 1)2 + (22 — 1)2 + -+ + (z, — 1)%.

e Evaluate at 29 =0, f(z9) = n.

e We want

F@*) =n (1 - 1)% <e

n

¢ With averaging, we get

k> ﬁlog <2> — Factor of n is bad!
2 €

o We wanted O ("T—B X g(e)>
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What to do?

e We can write the coordinate descent update as follows,
1 n
T~ + thiei,
=1

where

e h; is the update to coordinate i
e ¢; is the ith unit coordinate vector

e Averaging: 3 =n
e Summation: 5 =1

— When can we safely use g ~ 17
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When can we use small 57?

e Three models for f with small g:
@ Smooth partially separable f [Richtarik & Takac, 2011b]
T Li o
fla+te) < f(a) + Vf(z)" (tei) + ot

flx)=">" fs(z), fsdepends on z; fori e J only
Jes

w:=maxjec7 |J|

® Nonsmooth max-type f [Fercoq & Richtarik, 2013]
f(z) = max,cq{z? Az — g(2)} w = maxi<j<m |[{¢ : Aj; # 0}

® £ with ‘bounded Hessian’ [Bradley et al., 2011, Richtarik & Takac¢, 20133]

L =diag(AT A)
0 = Amaz(L™/2AT AL=1/?)
— w is the degree of partial separability, o is spectral radius.

flz+h) < f(z)+ Vfx)Th+ %hTATAh
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Parallel Coordinate Descent Method

Algorithm 1 Parallel Coordinate Descent Method 1 (PCDM1)

1: Choose initial point z; € RY

2 for k=0,1,2,... do

3 Randomly generate a set of blocks S; € {1,2,...,n}
& T Zr+ (R(zE)) sy

5. end for

o Atiteration k, select a random set Si.
e S}, is a realization of a random set-valued mapping (or sampling) S.

« Update h; depends on F, z and on law describing S.
— Continuously interpolates between serial coordinate descent and gradient.
 Manipulates » and E[|S]].
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ESO: Expected Separable Overapproximation

o We say that f admits a (8, w)-ESO with respect to (uniform) sampling S if for
allz,h ¢ R"

(1,8~ 50(30) = B[+ g)] < 10+ S (95074 Sy

where
* higy = e hiei, and [[R]12, = 320 wihi)?
o We note that V£ (z)"h + 5||h||2 is separable in h.
¢ Minimize with respect to A in parallel — yields update

R Y Z V of(x
ZES
o Compute updates for i € S only.
— Separable quadratic overapproximation of E[f] evaluated at update.
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Convergence Rate for Convex f

o If (f,5) ~ ESO(B,w), then [Richtarik & Takag, 2011b]

() (L 0,

which implies that

P(F(a*) = F*<e)>1—p.

e: error tolerance

n: # coordinates

E[|S|]: average # updated coordinates per iteration
3: step size parameter
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Convergence Rate for Strongly Convex f

o If (f,8) ~ ESO(B,w), then [Richtarik & Takag, 2011b]

. (E[Tﬂ]) (ot e ()

which implies that

P(F(z*)—F*<e)>1—p.

e us(w): strong convexity constant of loss f
e uq(w): strong convexity constant of regularizer g

— If pgy(w) is large, then the slowdown effect of /5 is eliminated.
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What if problem is only partially separable?

« Uniform sampling: P(S = {i})

S|=

. A S| =7
« r-nice sampling: P(S = §) = { (%)

<— for shared memory systems
0, otherwise
o At each iteration:

— Choose set of 4, each subset of 7 coordinates chosen with the same probability.
— Assign each i to a dedicated processor.
— Compute and apply the update.

— All blocks are the same size 7 (otherwise, probability is 0).
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What if problem is only partially separable?

45|

(%)

o Generates all sets of equal cardinality with equal probability.
e Can model unreliable processors/machines.
e Let ¢, = P(|S| = 7), with n = 5 coordinates.

a2 93 94 G O O O O O

« Doubly uniform (DU) sampling: P(S = S) =

S
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« Doubly uniform (DU) sampling: P(S = S) = (q'ns‘)
5]

o Generates all sets of equal cardinality with equal probability.
e Can model unreliable processors/machines.

e Let ¢, = P(|S| = 7), with n = 5 coordinates.

5
||I| l
1 ©O 0 0 0 O

qg1 492 43 44 g5
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What if problem is only partially separable?

e Binomial sampling: consider independent equally unreliable processors.
e Each of T processors available with probability p;,, busy with probability 1 — py.
e # available processors (number of blocks that can be updated in parallel) at
each iteration is a binomial random variable with parameters 7 and py.
o Use explicit or implicit selection.
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ESO Theory
© Smooth partially separable f [Richtarik & Takac¢, 2011b]

flx+te;) < flx) + V) (te;) + %tQ

=Y fs(x), fsdepends on =; fori € J only
JeJ

w = maxjes |/

Theorem: If S is doubly uniform, then

& (1o + )] < 56+ ZEL (9t B,

o (EISE
(w-1) ( E[3] 1)
n—1 ’

where

B=1+ w; =L;. 1=1,2,...,n

— Bis small if w is small (i.e., more separable)
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ESO Theory

eampling § E[S]] A w morll:::iuonic? Follows from
uniform E[15)] 1 vio L No Thrm 12
nonoverlapping uniform B 1 ToL Yes Thm 13
. -y ELELL )

doubly uniform E[S]] | 1+ mm:’;_l:' 5y L No Thm 15
r-uniform T minfw, 7} L Yes Thrm 12
+-nice T 14 o=y L Ne Thm 14/15
(7. pw -binomial TPh 1+ :‘;T:R__lj L No Thm 15
serial 1 1 L Yes Thm 13/14/15
fully parallel T w L Yes Thm 13/14/15

— (Richtarik & Takac, 2013) “Parallel Coordinate Descent Methods for Big Data Optimization”.
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speedup

s(r)

Theoretical Speedup

L T=® :1+T(T—1)’

s(r)=1/r

.-1=16
s(r) = 16/(1+15r)

w often a constant that depends on n.
e 1 is a measure of ‘density’.
— MUCH OF BIG DATA IS HERE!

. . | " h ; )
0 01 02 03 04 05 06 07 08 09 1
r=(o-1)/(n-1)
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Theory vs Practice

>
—_—w=5 =5 [ae
— =10 ——=10 o
—_ -« »
109 109 %0
= =100 =®»=w=100 <
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e 7 = # processors vs. theoretical (left) and experimental (right) speed-up for

n = 1000 coordinates
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Experiment

1 billion-by-2 billion LASSO problem [Richtarik & Takac, 2012]
1
fla) =5 lAz — olI3,  g(x) = [|=[h

A has 2 x 10° rows and n = 10? columns.

l2*lo = 10°

|A. illo = 20 (column)

max; || 4;.[lo = 35 (row) = w = 35 (degree of partial separability of f).
Used approximation of 7-nice sampling S (independent sampling, 7 << n).

Asynchronous implementation.
— Older information used to update coordinates, but observed slow down is limited.
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Experiment: Coordinate Updates

T H T H

o 10 30 20
# coordinale updates normalized [(kt)/n]
e For each 7, serial and parallel CD need approximately same number of
coordinate updates.

e Method identifies active set.
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Experiment: Iterations

10%
o BB b | %-16 Cores
. 10 FAe M w-24 Cores
4
T
X
e
10°
107" i
A

0 10 20 30 40
# iterations normalized [k/n]

e Doubling 7 roughly translates to halving the number of iterations.
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Experiment: Wall Time

: |-B=1 Core
10 -8-2 Cores
i -@-4 Cores
. |-e-8Comes
o (BRG ibe EE i i|=%-16 Cores
. 10 “|-9-24 Cores
Y
S :
w (1]
10
107"%
- R D
0 10 40 50

20 30
wall time [hours]

e Doubling 7 roughly translates to halving the wall time.
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Conclusions

¢ Coordinate descent scales very well to big data problems of special structure.
— Requires (partial) separability/sparse dependency graph.

e Care is needed when combining updates (add them up? average?)

e Sampling strategies that take into account unreliable processors.
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