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Online Convex Optimization

e In online convex optimization (OCO), learn from experience.

e At each iteration ¢, player chooses z; from decision set K.
e Convex cost/loss function f; € F : K — IR is revealed.

e F bounded family of cost functions.

e Unknown to decision maker beforehand.

e Can be adversarially chosen.

e Can depend on action taken by decision maker.

e Costincurred by player is f;(z;).
e Applications: online routing, ad selection for search engines, spam filtering,

prediction from expert advice, online shortest paths, portfolio selection, matrix
completion and recommendation systems, etc. ...
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Examples

¢ Online Linear Spam Filtering:

o K={zeR?||z|| <w}, norm-bounded linear filters.
o Features (words) a € IR?, labels b € {—1,1}.
e Attime ¢, select pair (ay, by).
e Loss function: f;(x) = (sign(a x) — b;)?.
e Online Matrix Completion (recommendation systems):
e K C{X|X €{0,1}"*™}, n people, m movies.
e X(i,j) = 1implies person i likes song j (0 otherwise).
o Attime ¢, select a; = (i+, j:) and corresponding b; € {0, 1}.
e Loss function: f,(X) = (X (i¢, ji) — bs)?.
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Restrictions

e Losses f; must be bounded.
o Otherwise, adversary could keep decreasing scale of loss.
— Possibly never recover from loss of first step.
e Decision set K must be bounded/structured (not necessarily finite).

o Consider decision making with an infinite set of possible decisions.
o Adversary can assign high loss to all strategies chosen by player indefinitely,
while setting apart some strategies with zero loss.

— Precludes any meaningful performance metric.



Goal of Offline vs Online Convex Optimization

Offline: To minimize optimization error,
he = f(x) — f(x").

Online: To minimize regret,
T T
regret = Z fe(@e) — ml}élz fe(z).
t=1 M
— Optimization error ill-defined in online setting (objective changes at each ¢).

Assume all f; := fand zp = %Zle x; (average decision).
Then f(zr) — f(z*) at a rate at most the average regret,

a «q _ regret
D) = f@)) = ==

t=1

f(@r) — f(z%) <

Nl
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General Regret

e Given an algorithm A, which maps certain game history to decision in K.

e Formally define regret of A after T iterations as

T
regret;(A) =  sup {Z en) glellrclz ft(:c)} .
t=1

{f1, s Jt}CF

 Algorithm performs well if its regret is sublinear as a function of 7', i.e., o(T).
— On average, the algorithm performs as well as best fixed strategy in hindsight.
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Projections Onto Convex Sets

¢ Projection onto a convex set:
¢ Defined as the closest point inside the convex set to a given point,

Ik (y) £ argmin ||z — y||.
xeC

— Projection of a given point over a compact convex set exists and is unique.

Theorem (Pythagoras, circa 500 BC)
Let K C IR? be a convex set, y € IR? and = = Iix(y). Then for any » € K we have

ly =zl = [z — 2|



Offline Gradient Descent - Algorithm

Algorithm 2 Basic gradient descent

1: Input: f, T, initial point x; € K, sequence of step sizes {n;}
2 fort=1toT do

3 Let yoq =% — 9V (xe), x00 =k (¥es1)

4: end for

a: return Xy

e Take a step in direction of negative gradient of cost.
e May result in point outside underlying convex set.

¢ Algorithm projects back onto the convex set.



Online Gradient Descent - Algorithm

Algorithm 6 online gradient descent

1: Input: convex set K, T, x; € K, step sizes {n;}
2: fort=1+to T do

3 Play x; and observe cost fi(x;).

4:  Update and project:

Yer1 = Xe — 1V fix)
Kppl = g(}’h-l}

5 end for

e Take a step in direction of negative gradient of previous cost.
e May result in point outside underlying convex set.

¢ Algorithm projects back to the convex set.



Assumptions

All f; are convex and differentiable.
Decision set K € IR? is a compact convex set.

Denote by D an upper bound on the diameter of K:

Vez,ye K, |lz—y| <D.

Denote by G an upper bound on the norm of the subgradients of f over K:

|Vf(z)]] <Gforallx e K.
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Regret Bound for Online Gradient Descent

Theorem
Online gradient descent (GD) with step sizes n; = %5 guarantees the following for
allT > 1:

regret, = Z felwr) = min Z fila*) < GD\F
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Proof.
Let z* € argmin, . S°_, fi(). By the convexity of f,

fr(ze) — fe(a®) < V fe(z)T (2 — ). (1)
Using the update rule for ;11 and the Pythagorean theorem,
i1 — 2|* = Tk (2 = 0V firlwe)) — 2*(° < o = eV folwe) — 2|

Hence,
[zis1 — 212 < o — 2* 2 + 07 |V fulzo) |12 = 200V fi(m) T (wea®)
2y = 2*||* = [Japgs — 2"
M

= 2Vfilx) (2 - 2*) < +mG. 2
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Proof contd ...

Summing (1) and (2) from ¢t = 1to T, and setting n = (W|th é 0):

\[

T
2 <Z fi(xe) — fi(z ) < 2vat x) T (2 — %)
=1

T
|z — 33*H2 — |1 — 33*H2 2
< g o +G § M
t=1

T
. 1
(00 110 20, ez —a°|7 20) < 3 e (- ) G2Zm
Tt t—

<DQZ<—> GQZnt

m M1

t=1
Last inequality follows from 7, = 2~ and Zthl < 2V/T.
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Better Regret Bounds?

e Online GD is a linear-time algorithm for the most general case.
o Tight regret bounds and elementary proofs.

e Do regret bounds in OCO vary as much as the convergence bounds in offline
convex optimization over different classes of convex cost functions?

— Yes!
e Some problems admit better regret:

o Least squares linear regression
e Soft-margin SVM
o Portfolio selection
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Assumptions

¢ A function is a-strongly convex if

) = f(@) + Vi@ (y—2) + Slly - all”

e If a function is twice differentiable and admits a second derivative (Hessian),
above condition equivalent to

al < VZf(x),

where A < B if the matrix B — A is positive semidefinite.
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Example of Strongly Convex Cost Function

¢ Online Soft-Margin SVM:

o Features a € RY, labels b € {—1,1}
e [Cis a set of linear predictors:
e Weight vectors = € IR?.
¢ Prediction of weight vector z for feature vector a is a” .

e Loss function: fi(z) = max{0,1—bal x} + Az|?
——

convex, non-smooth (hinge loss)  strongly-convex

— Online GD with step-sizes 7, ~ 1 has O(log T) regret.
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Logarithmic Regret Bound for Online GD

Theorem
For «a-strongly convex loss functions, online GD with step sizes n; = é achieves
the following guarantee for all T > 1:

2
regret; < %(1 + log(T)).
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Proof.

Let z* € argmin, - -7 | fi(x).
Applying the definition of a-strong convexity to the pair of points z;, =*, we have

2 (filws) — fila®) <2V filw)" (20 — 2*) — afla® — 2. 3)
Using the update rule for z,+; and the Pythagorean Theorem, we get
o1 — a1 = [Tk (2 = eV fo(we)) = 2*|* < o = 0oV fole) — 27|,
Hence,

21 — 2 < [z — 2% + 2|V fe(zo) |? = 200V fo(ze) T (2 — 27)
*||2 - ||33t+1 - 96'*”2

M

N

=  2Vf(z) (z —2*) < +mG>. (4)
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Proof contd ...
Summing (3) and (4) from ¢ = 1 to T, and setting 7, = 1/at (define .- = 0):

T
22 filw) - <Zlm—xu2 <__O‘>+G22m
t=1 M M—1 P
(since 1/m9 £ 0, [lz71 — 2*||* = 0)
T 1
_ o L
=0+G*) -
=1
GQ
< ;(l—l—log(T)).
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Asymptotic Convergence Rates

 Offline: Establish convergence rates of optimization error, f(z:) — f(z*).

B-smooth | a-strongly convex

1
ol

Gradient descent
Accelerated GD

RIS

e Online: Establish asymptotic regret bounds.

B-smooth | a-strongly convex
Upper bound VT LlogT
1 log T
Average regret N o

— Smoothness does not improve asymptotic regret rates.
e [-smooth = g-Lipschitz V f;.

— Despite potentially different cost functions, the regret attained is sublinear. .



Online Mirrored Descent

e Mirrored Descent: Class of first order methods, generalize gradient descent.
¢ Online Mirrored Descent (OMD): Online version of Mirrored Descent.
e Computes current decision using gradient update rule and previous decision.
e Update carried out in dual space.
e Duality notion defined by the choice of a regularization function R.
e Using regularization:

e Ensures stability of decision — unlike Follow-The-Leader (see last week’s slides).
e Transforms space in which gradient updates are performed

— unlike Follow-The-Regularized-Leader, which updates in Euclidean space.
e Enables better bounds in terms of geometry of the space.
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Bregman Divergence

Bregman divergence with respect to regularization function R defined by
Br(a|ly) := R(x) = R(y) = VR(y)" (z — y).
For twice differentiable functions,
Br(ally) = gl — 2 2 Slle — ylene)
for some point z € [z, y],
-5y 211221 lo-2re)-
Thus,

1
Br(zlly) = 3llz = vllz,,

Projection of a point y according to the Bregman divergence is given by

Mi(y) = argmin Bp(al y).
fAS
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Versions of Online Mirrored Descent

e There are two versions of OMD:

o Lazy: Keeps track of a point in Euclidean space and projects onto convex
decision set K only at decision time.
¢ Agile: Maintains feasible point at all times, much like online GD.
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Online Mirrored Descent - Algorithm

Algorithm 11 Online Mirrored Descent
1: Input: parameter 1 > 0, regularization function R(x).
2: Let y; be such that VA(y,) = 0 and x; = arg min, ¢ Bp{x||y1).
3 fort=1toT do
4:  Play x;.
5. Observe the payoff function f; and let V; = V fi(x).
6:  Update y; according to the rule:

Lazy version] VR(yi1) =VR(y) -0V,
[Agile version)] VR(yt1) =VH(x) —n Vs
Project according to By:

¥p41 = argmin Br(x|/ye1)
xek

7: end for

— Main point: Can replace Euclidean norm with other divergence functions.
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Regularized Follow-The-Leader

e Let R be a strongly convex, smooth and twice differentiable.

Algorithm 10 Regularized Follow The Leader

1: Input: i > 0, regularization function i, and a convex compact set
K.

2: Let x; = argminyex {12(x)}.

3 fort=1toT do

4 Predict x:.

5. Observe the payoff function f; and let ¥V, = Vf,(x,).

6 Update

X;,, = argmin {T} Z \T:'x + I:’.(x]}
xekl =1

7: end for

¢ Regularization improves stability of prediction (see last week).
¢ Yields asymptotically optimal regret bounds.
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Online Mirrored Descent and Regularized Follow-The-Leader

e For linear cost functions, RFTL and lazy-OMD algorithms are equivalent.
— Get regret bounds for free.

Lemma
Let f1,..., fr be linear cost functions. The lazy OMD and RFTL algorithms
produce identical predictions, i.e.,

t—1
argmin Br(z||y;) = argm/n (nZVTx + R(z ))
ek

e s—1
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Discussion

¢ Online convex optimization:
¢ Learns from experience as more aspects of the problem are observed.
¢ Many applications.
e Goal is to minimize regret.

e Online Gradient Descent:

o Takes step in direction of negative gradient of previous cost function.
o Asymptotic regret bound:

e Convex cost functions: O(v/T) regret.
e a-strongly convex cost function: O(log T') regret.

e Online Mirrored Descent:

¢ Replaces Euclidean norm with Bregman divergence function.
o Lazy version equivalent to Regularized-Follow-The-Leader.
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