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Online Convex Optimization

• In online convex optimization (OCO), learn from experience.
• At each iteration t, player chooses xt from decision set K.
• Convex cost/loss function ft ∈ F : K 7→ IR is revealed.

• F bounded family of cost functions.
• Unknown to decision maker beforehand.
• Can be adversarially chosen.
• Can depend on action taken by decision maker.

• Cost incurred by player is ft(xt).

• Applications: online routing, ad selection for search engines, spam filtering,

prediction from expert advice, online shortest paths, portfolio selection, matrix

completion and recommendation systems, etc. . . .
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Examples

• Online Linear Spam Filtering:
• K = {x ∈ IRd | ‖x‖ ≤ ω}, norm-bounded linear filters.
• Features (words) a ∈ IRd, labels b ∈ {−1, 1}.
• At time t, select pair (at, bt).
• Loss function: ft(x) = (sign(aTt x)− bt)2.

• Online Matrix Completion (recommendation systems):
• K ⊆ {X | X ∈ {0, 1}n×m}, n people, m movies.
• X(i, j) = 1 implies person i likes song j (0 otherwise).
• At time t, select at = (it, jt) and corresponding bt ∈ {0, 1}.
• Loss function: ft(X) = (X(it, jt)− bt)2.
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Restrictions

• Losses ft must be bounded.
• Otherwise, adversary could keep decreasing scale of loss.

→ Possibly never recover from loss of first step.

• Decision set K must be bounded/structured (not necessarily finite).
• Consider decision making with an infinite set of possible decisions.
• Adversary can assign high loss to all strategies chosen by player indefinitely,

while setting apart some strategies with zero loss.

→ Precludes any meaningful performance metric.
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Goal of Offline vs Online Convex Optimization
• Offline: To minimize optimization error,

ht = f(xt)− f(x∗).

• Online: To minimize regret,

regret =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

→ Optimization error ill-defined in online setting (objective changes at each t).

• Assume all ft := f and x̄T = 1
T

∑T
t=1 xt (average decision).

• Then f(x̄T )→ f(x∗) at a rate at most the average regret,

f(x̄T )− f(x∗) ≤ 1

T

T∑
t=1

[f(xt)− f(x∗)] =
regret
T

.
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General Regret

• Given an algorithm A, which maps certain game history to decision in K.

• Formally define regret of A after T iterations as

regretT (A) = sup
{f1,...,ft}⊆F

{
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

}
.

• Algorithm performs well if its regret is sublinear as a function of T , i.e., o(T ).

→ On average, the algorithm performs as well as best fixed strategy in hindsight.
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Projections Onto Convex Sets

• Projection onto a convex set:
• Defined as the closest point inside the convex set to a given point,

ΠK(y) , argmin
x∈K

‖x− y‖.

→ Projection of a given point over a compact convex set exists and is unique.

Theorem (Pythagoras, circa 500 BC)

Let K ⊆ IRd be a convex set, y ∈ IRd and x = ΠK(y). Then for any z ∈ K we have

‖y − z‖ ≥ ‖x− z‖.
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Offline Gradient Descent - Algorithm

• Take a step in direction of negative gradient of cost.

• May result in point outside underlying convex set.

• Algorithm projects back onto the convex set.
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Online Gradient Descent - Algorithm

• Take a step in direction of negative gradient of previous cost.

• May result in point outside underlying convex set.

• Algorithm projects back to the convex set.
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Assumptions

• All ft are convex and differentiable.

• Decision set K ∈ IRd is a compact convex set.

• Denote by D an upper bound on the diameter of K:

∀ x, y ∈ K, ‖x− y‖ ≤ D.

• Denote by G an upper bound on the norm of the subgradients of f over K:

‖∇f(x)‖ ≤ G for all x ∈ K.
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Regret Bound for Online Gradient Descent

Theorem
Online gradient descent (GD) with step sizes ηt = D

G
√
t

guarantees the following for

all T ≥ 1:

regretT =

T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x
∗) ≤ 3

2
GD
√
T
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Proof.
Let x∗ ∈ argminx∈K

∑T
t=1 ft(x). By the convexity of f ,

ft(xt)− ft(x∗) ≤ ∇ft(xt)T (xt − x∗). (1)

Using the update rule for xt+1 and the Pythagorean theorem,

‖xt+1 − x∗‖2 = ‖ΠK(xt − ηt∇ft(xt))− x∗‖2 ≤ ‖xt − ηt∇ft(xt)− x∗‖2.

Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2t ‖∇ft(xt)‖2 − 2ηt∇ft(xt)T (xtx
∗)

⇐⇒ 2∇ft(xt)T (xt − x∗) ≤
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG

2. (2)
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Proof cont’d ...
Summing (1) and (2) from t = 1 to T , and setting ηt = D

G
√
t

(with 1
η0

, 0):

2

(
T∑
t=1

ft(xt)− ft(x∗)

)
≤ 2

T∑
t=1

∇ft(xt)T (xt − x∗)

≤
T∑
t=1

‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+G2

T∑
t=1

ηt

(since 1/η0 , 0, ‖xT+1 − x∗‖2 ≥ 0) ≤
T∑
t=1

‖xt − x∗‖2
(

1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤ D2
T∑
t=1

(
1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤ D2 1

ηT
+G2

T∑
t=1

ηt ≤ 3DG
√
T .

Last inequality follows from ηt = D
G
√
t

and
∑T

t=1
1√
t
≤ 2
√
T .
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Better Regret Bounds?

• Online GD is a linear-time algorithm for the most general case.
• Tight regret bounds and elementary proofs.

• Do regret bounds in OCO vary as much as the convergence bounds in offline
convex optimization over different classes of convex cost functions?

→ Yes!

• Some problems admit better regret:
• Least squares linear regression
• Soft-margin SVM
• Portfolio selection
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Assumptions

• A function is α-strongly convex if

f(y) ≥ f(x) +∇f(x)T (y − x) +
α

2
‖y − x‖2.

• If a function is twice differentiable and admits a second derivative (Hessian),

above condition equivalent to

αI � ∇2f(x),

where A � B if the matrix B −A is positive semidefinite.
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Example of Strongly Convex Cost Function

• Online Soft-Margin SVM:
• Features a ∈ IRd, labels b ∈ {−1, 1}
• K is a set of linear predictors:

• Weight vectors x ∈ IRd.
• Prediction of weight vector x for feature vector a is aTx.

• Loss function: ft(x) = max{0, 1− btaTt x}︸ ︷︷ ︸
convex, non-smooth (hinge loss)

+ λ‖x‖2︸ ︷︷ ︸
strongly-convex

→ Online GD with step-sizes ηt ≈ 1
t has O(log T ) regret.
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Logarithmic Regret Bound for Online GD

Theorem
For α-strongly convex loss functions, online GD with step sizes ηt = 1

αt achieves

the following guarantee for all T ≥ 1:

regretT ≤
G2

2α
(1 + log(T )).
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Proof.
Let x∗ ∈ argminx∈K

∑T
t=1 ft(x).

Applying the definition of α-strong convexity to the pair of points xt, x∗, we have

2 (ft(xt)− ft(x∗) ≤ 2∇ft(xt)T (xt − x∗)− α‖x∗ − xt‖2. (3)

Using the update rule for xt+1 and the Pythagorean Theorem, we get

‖xt+1 − x∗‖2 = ‖ΠK(xt − ηt∇ft(xt))− x∗‖2 ≤ ‖xt − ηt∇ft(xt)− x∗‖2.

Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2t ‖∇ft(xt)‖2 − 2ηt∇ft(xt)T (xt − x∗)

⇐⇒ 2∇ft(xt)T (xt − x∗) ≤
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG

2. (4)
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Proof cont’d ...
Summing (3) and (4) from t = 1 to T , and setting ηt = 1/αt (define 1

η0
, 0):

2

T∑
t=1

(ft(xt)− ft(x∗)) ≤
T∑
t=1

‖xt − x∗‖2
(

1

ηt
− 1

ηt−1
− α

)
+G2

T∑
t=1

ηt

(since 1/η0 , 0, ‖xT+1 − x∗‖2 ≥ 0)

= 0 +G2
T∑
t=1

1

αt

≤ G2

α
(1 + log(T )).
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Asymptotic Convergence Rates
• Offline: Establish convergence rates of optimization error, f(xt)− f(x∗).

β-smooth α-strongly convex

Gradient descent β
T

1
αT

Accelerated GD β
T 2 -

• Online: Establish asymptotic regret bounds.

β-smooth α-strongly convex

Upper bound
√
T 1

α log T

Average regret 1√
T

log T
αT

→ Smoothness does not improve asymptotic regret rates.
• β-smooth ≡ β-Lipschitz ∇ft.

→ Despite potentially different cost functions, the regret attained is sublinear.
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Online Mirrored Descent

• Mirrored Descent: Class of first order methods, generalize gradient descent.

• Online Mirrored Descent (OMD): Online version of Mirrored Descent.
• Computes current decision using gradient update rule and previous decision.
• Update carried out in dual space.

• Duality notion defined by the choice of a regularization function R.

• Using regularization:
• Ensures stability of decision→ unlike Follow-The-Leader (see last week’s slides).
• Transforms space in which gradient updates are performed
→ unlike Follow-The-Regularized-Leader, which updates in Euclidean space.

• Enables better bounds in terms of geometry of the space.
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Bregman Divergence
• Bregman divergence with respect to regularization function R defined by

BR(x||y) := R(x)−R(y)−∇R(y)T (x− y).

• For twice differentiable functions,

BR(x||y) =
1

2
‖x− y‖2z ,

1

2
‖x− y‖2∇2R(z),

for some point z ∈ [x, y],

‖ · ‖∗x,y , ‖ · ‖∗z , ‖ · ‖∇−2R(z).

• Thus,

BR(x||y) =
1

2
‖x− y‖2x,y.

• Projection of a point y according to the Bregman divergence is given by

ΠR
K(y) = argmin

x∈K
BR(x||y).
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Versions of Online Mirrored Descent

• There are two versions of OMD:
• Lazy: Keeps track of a point in Euclidean space and projects onto convex

decision set K only at decision time.
• Agile: Maintains feasible point at all times, much like online GD.
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Online Mirrored Descent - Algorithm

→ Main point: Can replace Euclidean norm with other divergence functions.
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Regularized Follow-The-Leader

• Let R be a strongly convex, smooth and twice differentiable.

• Regularization improves stability of prediction (see last week).

• Yields asymptotically optimal regret bounds.
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Online Mirrored Descent and Regularized Follow-The-Leader

• For linear cost functions, RFTL and lazy-OMD algorithms are equivalent.

→ Get regret bounds for free.

Lemma
Let f1, . . . , fT be linear cost functions. The lazy OMD and RFTL algorithms

produce identical predictions, i.e.,

argmin
x∈K

BR(x||yt) = argmin
x∈K

(
η

t−1∑
s=1

∇Ts x+R(x)

)
.
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Discussion

• Online convex optimization:
• Learns from experience as more aspects of the problem are observed.
• Many applications.
• Goal is to minimize regret.

• Online Gradient Descent:
• Takes step in direction of negative gradient of previous cost function.
• Asymptotic regret bound:

• Convex cost functions: O(
√
T ) regret.

• α-strongly convex cost function: O(log T ) regret.

• Online Mirrored Descent:
• Replaces Euclidean norm with Bregman divergence function.
• Lazy version equivalent to Regularized-Follow-The-Leader.
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