
Monte Carlo Methods

(Estimators, On-policy/Off-policy Learning)

Julie Nutini

MLRG - Winter Term 2

January 24th, 2017

1 / 24

Monte Carlo Methods

• Monte Carlo (MC) methods are learning methods, used for

estimating value functions and discovering optimal policies.

• Do not assume complete knowledge of environment.

→ Learn from experience.

• Sample sequences of states, actions and rewards.
• On-line experience: No model necessary, attains optimality.
• Simulated experience: No need for full model.

• Sample according to desired probability distributions.

• Solve RL problem by averaging complete sample returns.
• Episodic tasks ensure well-defined returns are available.
• Incremental in an episode-by-episode sense.

• Update value estimates/policies after completion of episode.

2 / 24

Monte Carlo Methods

• Monte Carlo (MC) methods are learning methods, used for

estimating value functions and discovering optimal policies.

• Do not assume complete knowledge of environment.

→ Learn from experience.

• Sample sequences of states, actions and rewards.

• On-line experience: No model necessary, attains optimality.
• Simulated experience: No need for full model.

• Sample according to desired probability distributions.

• Solve RL problem by averaging complete sample returns.
• Episodic tasks ensure well-defined returns are available.
• Incremental in an episode-by-episode sense.

• Update value estimates/policies after completion of episode.

2 / 24

Monte Carlo Methods

• Monte Carlo (MC) methods are learning methods, used for

estimating value functions and discovering optimal policies.

• Do not assume complete knowledge of environment.

→ Learn from experience.

• Sample sequences of states, actions and rewards.
• On-line experience: No model necessary, attains optimality.

• Simulated experience: No need for full model.
• Sample according to desired probability distributions.

• Solve RL problem by averaging complete sample returns.
• Episodic tasks ensure well-defined returns are available.
• Incremental in an episode-by-episode sense.

• Update value estimates/policies after completion of episode.

2 / 24

Monte Carlo Methods

• Monte Carlo (MC) methods are learning methods, used for

estimating value functions and discovering optimal policies.

• Do not assume complete knowledge of environment.

→ Learn from experience.

• Sample sequences of states, actions and rewards.
• On-line experience: No model necessary, attains optimality.
• Simulated experience: No need for full model.

• Sample according to desired probability distributions.

• Solve RL problem by averaging complete sample returns.
• Episodic tasks ensure well-defined returns are available.
• Incremental in an episode-by-episode sense.

• Update value estimates/policies after completion of episode.

2 / 24

Monte Carlo Methods

• Monte Carlo (MC) methods are learning methods, used for

estimating value functions and discovering optimal policies.

• Do not assume complete knowledge of environment.

→ Learn from experience.

• Sample sequences of states, actions and rewards.
• On-line experience: No model necessary, attains optimality.
• Simulated experience: No need for full model.

• Sample according to desired probability distributions.

• Solve RL problem by averaging complete sample returns.
• Episodic tasks ensure well-defined returns are available.

• Incremental in an episode-by-episode sense.
• Update value estimates/policies after completion of episode.

2 / 24

Monte Carlo Methods

• Monte Carlo (MC) methods are learning methods, used for

estimating value functions and discovering optimal policies.

• Do not assume complete knowledge of environment.

→ Learn from experience.

• Sample sequences of states, actions and rewards.
• On-line experience: No model necessary, attains optimality.
• Simulated experience: No need for full model.

• Sample according to desired probability distributions.

• Solve RL problem by averaging complete sample returns.
• Episodic tasks ensure well-defined returns are available.
• Incremental in an episode-by-episode sense.

• Update value estimates/policies after completion of episode.

2 / 24

Monte Carlo Policy Evaluation

• Goal: Learn state-value function V π(s) for given policy π.
• Value of a state is the expected return (expected cumulative

future discounted reward) starting from s.

• Given: Some number of episodes under π which contain s.

• Idea: Average returns observed after visits to s.
→ Average converges to expected value with ↑ # returns.

• (Underlying idea to all Monte Carlo methods.)

• Each occurrence of state s in an episode is called a visit.
• First-visit MC: Average returns for first time s visited in episode.

• Every-visit MC: Average returns for every time s visited in episode.

• Both converge asymptotically.

3 / 24

Monte Carlo Policy Evaluation

• Goal: Learn state-value function V π(s) for given policy π.
• Value of a state is the expected return (expected cumulative

future discounted reward) starting from s.

• Given: Some number of episodes under π which contain s.

• Idea: Average returns observed after visits to s.
→ Average converges to expected value with ↑ # returns.

• (Underlying idea to all Monte Carlo methods.)

• Each occurrence of state s in an episode is called a visit.
• First-visit MC: Average returns for first time s visited in episode.

• Every-visit MC: Average returns for every time s visited in episode.

• Both converge asymptotically.

3 / 24

Monte Carlo Policy Evaluation

• Goal: Learn state-value function V π(s) for given policy π.
• Value of a state is the expected return (expected cumulative

future discounted reward) starting from s.

• Given: Some number of episodes under π which contain s.

• Idea: Average returns observed after visits to s.
→ Average converges to expected value with ↑ # returns.

• (Underlying idea to all Monte Carlo methods.)

• Each occurrence of state s in an episode is called a visit.
• First-visit MC: Average returns for first time s visited in episode.

• Every-visit MC: Average returns for every time s visited in episode.

• Both converge asymptotically.

3 / 24

Monte Carlo Policy Evaluation

• Goal: Learn state-value function V π(s) for given policy π.
• Value of a state is the expected return (expected cumulative

future discounted reward) starting from s.

• Given: Some number of episodes under π which contain s.

• Idea: Average returns observed after visits to s.
→ Average converges to expected value with ↑ # returns.

• (Underlying idea to all Monte Carlo methods.)

• Each occurrence of state s in an episode is called a visit.

• First-visit MC: Average returns for first time s visited in episode.

• Every-visit MC: Average returns for every time s visited in episode.

• Both converge asymptotically.

3 / 24

Monte Carlo Policy Evaluation

• Goal: Learn state-value function V π(s) for given policy π.
• Value of a state is the expected return (expected cumulative

future discounted reward) starting from s.

• Given: Some number of episodes under π which contain s.

• Idea: Average returns observed after visits to s.
→ Average converges to expected value with ↑ # returns.

• (Underlying idea to all Monte Carlo methods.)

• Each occurrence of state s in an episode is called a visit.
• First-visit MC: Average returns for first time s visited in episode.

• Every-visit MC: Average returns for every time s visited in episode.

• Both converge asymptotically.

3 / 24

Monte Carlo Policy Evaluation

• Goal: Learn state-value function V π(s) for given policy π.
• Value of a state is the expected return (expected cumulative

future discounted reward) starting from s.

• Given: Some number of episodes under π which contain s.

• Idea: Average returns observed after visits to s.
→ Average converges to expected value with ↑ # returns.

• (Underlying idea to all Monte Carlo methods.)

• Each occurrence of state s in an episode is called a visit.
• First-visit MC: Average returns for first time s visited in episode.

• Every-visit MC: Average returns for every time s visited in episode.

• Both converge asymptotically.

3 / 24

First-Visit Monte Carlo Policy Evaluation

• Each return is an i.i.d. estimate of V π(s).

• Every average is an unbiased estimate, s.d. of error falls as 1/
√
n.

• Sequence of averages converges to expected value of V π(s).

4 / 24

First-Visit Monte Carlo Policy Evaluation

• Each return is an i.i.d. estimate of V π(s).

• Every average is an unbiased estimate, s.d. of error falls as 1/
√
n.

• Sequence of averages converges to expected value of V π(s).

4 / 24

First-Visit Monte Carlo Policy Evaluation

• Each return is an i.i.d. estimate of V π(s).

• Every average is an unbiased estimate, s.d. of error falls as 1/
√
n.

• Sequence of averages converges to expected value of V π(s).

4 / 24

First-Visit Monte Carlo Policy Evaluation

• Each return is an i.i.d. estimate of V π(s).

• Every average is an unbiased estimate, s.d. of error falls as 1/
√
n.

• Sequence of averages converges to expected value of V π(s).

4 / 24

Example: Blackjack

• Goal: Card sum greater than dealer without exceeding 21.

• States (200 of them):
• Current sum (12-21).
• Dealer’s showing card (ace-10).
• Do I have a useable ace?

• Reward: +1 for winning, 0 for a draw, -1 for losing.
• All rewards within game are 0, do not discount (γ = 0).

• Actions:
• Stick (stop receiving cards).
• Hit (receive another card).

• Policy: Stick if my sum is 20 or 21, otherwise hit.

→ Find state-value function for policy by MC approach.

5 / 24

Example: Blackjack

• Goal: Card sum greater than dealer without exceeding 21.

• States (200 of them):
• Current sum (12-21).
• Dealer’s showing card (ace-10).
• Do I have a useable ace?

• Reward: +1 for winning, 0 for a draw, -1 for losing.
• All rewards within game are 0, do not discount (γ = 0).

• Actions:
• Stick (stop receiving cards).
• Hit (receive another card).

• Policy: Stick if my sum is 20 or 21, otherwise hit.

→ Find state-value function for policy by MC approach.

5 / 24

Example: Blackjack

• Goal: Card sum greater than dealer without exceeding 21.

• States (200 of them):
• Current sum (12-21).
• Dealer’s showing card (ace-10).
• Do I have a useable ace?

• Reward: +1 for winning, 0 for a draw, -1 for losing.
• All rewards within game are 0, do not discount (γ = 0).

• Actions:
• Stick (stop receiving cards).
• Hit (receive another card).

• Policy: Stick if my sum is 20 or 21, otherwise hit.

→ Find state-value function for policy by MC approach.

5 / 24

Example: Blackjack

• Goal: Card sum greater than dealer without exceeding 21.

• States (200 of them):
• Current sum (12-21).
• Dealer’s showing card (ace-10).
• Do I have a useable ace?

• Reward: +1 for winning, 0 for a draw, -1 for losing.
• All rewards within game are 0, do not discount (γ = 0).

• Actions:
• Stick (stop receiving cards).
• Hit (receive another card).

• Policy: Stick if my sum is 20 or 21, otherwise hit.

→ Find state-value function for policy by MC approach.

5 / 24

Example: Blackjack

• Goal: Card sum greater than dealer without exceeding 21.

• States (200 of them):
• Current sum (12-21).
• Dealer’s showing card (ace-10).
• Do I have a useable ace?

• Reward: +1 for winning, 0 for a draw, -1 for losing.
• All rewards within game are 0, do not discount (γ = 0).

• Actions:
• Stick (stop receiving cards).
• Hit (receive another card).

• Policy: Stick if my sum is 20 or 21, otherwise hit.

→ Find state-value function for policy by MC approach.

5 / 24

Example: Blackjack

• Goal: Card sum greater than dealer without exceeding 21.

• States (200 of them):
• Current sum (12-21).
• Dealer’s showing card (ace-10).
• Do I have a useable ace?

• Reward: +1 for winning, 0 for a draw, -1 for losing.
• All rewards within game are 0, do not discount (γ = 0).

• Actions:
• Stick (stop receiving cards).
• Hit (receive another card).

• Policy: Stick if my sum is 20 or 21, otherwise hit.

→ Find state-value function for policy by MC approach.

5 / 24

Blackjack Value Functions
• Simulate many blackjack games using policy π.

• Average returns following each state (first-visit MC).

• Higher number of games (episodes), better approximation.

• Estimates for states with useable ace less certain.

6 / 24

Blackjack Value Functions
• Simulate many blackjack games using policy π.

• Average returns following each state (first-visit MC).

• Higher number of games (episodes), better approximation.

• Estimates for states with useable ace less certain.

6 / 24

Blackjack Value Functions
• Simulate many blackjack games using policy π.

• Average returns following each state (first-visit MC).

• Higher number of games (episodes), better approximation.

• Estimates for states with useable ace less certain.
6 / 24

Dynamic Programming vs. Monte Carlo

• Dynamic programming (DP): full knowledge of
environment.
• e.g., blackjack, naturally formulated as episodic finite MDP

• Player’s sum is 14, chooses to stick.
• What is expected reward as function of dealer’s hand?
• Requires all expected rewards and transition probabilities to

be computed prior to applying DP→ complex, error-prone.

→ Generating sample games easy.

• MC methods can be better, even when complete

knowledge of environment’s dynamics is known.

7 / 24

Dynamic Programming vs. Monte Carlo

• Dynamic programming (DP): full knowledge of
environment.
• e.g., blackjack, naturally formulated as episodic finite MDP

• Player’s sum is 14, chooses to stick.
• What is expected reward as function of dealer’s hand?

• Requires all expected rewards and transition probabilities to
be computed prior to applying DP→ complex, error-prone.

→ Generating sample games easy.

• MC methods can be better, even when complete

knowledge of environment’s dynamics is known.

7 / 24

Dynamic Programming vs. Monte Carlo

• Dynamic programming (DP): full knowledge of
environment.
• e.g., blackjack, naturally formulated as episodic finite MDP

• Player’s sum is 14, chooses to stick.
• What is expected reward as function of dealer’s hand?
• Requires all expected rewards and transition probabilities to

be computed prior to applying DP

→ complex, error-prone.

→ Generating sample games easy.

• MC methods can be better, even when complete

knowledge of environment’s dynamics is known.

7 / 24

Dynamic Programming vs. Monte Carlo

• Dynamic programming (DP): full knowledge of
environment.
• e.g., blackjack, naturally formulated as episodic finite MDP

• Player’s sum is 14, chooses to stick.
• What is expected reward as function of dealer’s hand?
• Requires all expected rewards and transition probabilities to

be computed prior to applying DP→ complex, error-prone.

→ Generating sample games easy.

• MC methods can be better, even when complete

knowledge of environment’s dynamics is known.

7 / 24

Dynamic Programming vs. Monte Carlo

• Dynamic programming (DP): full knowledge of
environment.
• e.g., blackjack, naturally formulated as episodic finite MDP

• Player’s sum is 14, chooses to stick.
• What is expected reward as function of dealer’s hand?
• Requires all expected rewards and transition probabilities to

be computed prior to applying DP→ complex, error-prone.

→ Generating sample games easy.

• MC methods can be better, even when complete

knowledge of environment’s dynamics is known.

7 / 24

Backup Diagram for Monte Carlo

• Shows all transitions, leaf nodes from root node whose

rewards and estimated values contribute to update.

• Entire episode.
• Rather than one-step transitions.

• Only one choice at each state.
• DP explores all possible transitions.

• MC does not bootstrap.
• Independent estimates for each state.

• Time required to estimate one state

independent of total number of states.

8 / 24

Backup Diagram for Monte Carlo

• Shows all transitions, leaf nodes from root node whose

rewards and estimated values contribute to update.

• Entire episode.
• Rather than one-step transitions.

• Only one choice at each state.
• DP explores all possible transitions.

• MC does not bootstrap.
• Independent estimates for each state.

• Time required to estimate one state

independent of total number of states.

8 / 24

The Power of Monte Carlo

• E.g., elastic membrane (Dirichlet Problem)
• How do we compute the shape of the surface?

→ Geometry of wire frame is known.

9 / 24

The Power of Monte Carlo

1 Height at any point is average of heights in small circle
around point.

• Solve by iterating, adjust towards average of neighbours.
2 Expected value of height at boundary approximates height

of surface at starting point.
• Take random walk until reach boundary.
• Average boundary heights of many walks.
→ Local consistency.

10 / 24

The Power of Monte Carlo

1 Height at any point is average of heights in small circle
around point.
• Solve by iterating, adjust towards average of neighbours.

2 Expected value of height at boundary approximates height
of surface at starting point.
• Take random walk until reach boundary.
• Average boundary heights of many walks.
→ Local consistency.

10 / 24

The Power of Monte Carlo

1 Height at any point is average of heights in small circle
around point.
• Solve by iterating, adjust towards average of neighbours.

2 Expected value of height at boundary approximates height
of surface at starting point.

• Take random walk until reach boundary.
• Average boundary heights of many walks.
→ Local consistency.

10 / 24

The Power of Monte Carlo

1 Height at any point is average of heights in small circle
around point.
• Solve by iterating, adjust towards average of neighbours.

2 Expected value of height at boundary approximates height
of surface at starting point.
• Take random walk until reach boundary.
• Average boundary heights of many walks.

→ Local consistency.

10 / 24

The Power of Monte Carlo

1 Height at any point is average of heights in small circle
around point.
• Solve by iterating, adjust towards average of neighbours.

2 Expected value of height at boundary approximates height
of surface at starting point.
• Take random walk until reach boundary.
• Average boundary heights of many walks.
→ Local consistency.

10 / 24

Monte Carlo Estimation of Action Values (Q)

• MC is most useful when a model is not available.
• With model, state values are sufficient to determine policy.

• Choose action that leads to best reward/next state.

• Without model, need to also estimate action values.

→ We want to learn Q∗.

• Policy evaluation problem for action values:
• Estimate Qπ(s, a), the expected return starting from state s,

taking action a, then following policy π.

11 / 24

Monte Carlo Estimation of Action Values (Q)

• MC is most useful when a model is not available.
• With model, state values are sufficient to determine policy.

• Choose action that leads to best reward/next state.

• Without model, need to also estimate action values.

→ We want to learn Q∗.

• Policy evaluation problem for action values:
• Estimate Qπ(s, a), the expected return starting from state s,

taking action a, then following policy π.

11 / 24

Monte Carlo Estimation of Action Values (Q)

• MC is most useful when a model is not available.
• With model, state values are sufficient to determine policy.

• Choose action that leads to best reward/next state.

• Without model, need to also estimate action values.

→ We want to learn Q∗.

• Policy evaluation problem for action values:
• Estimate Qπ(s, a), the expected return starting from state s,

taking action a, then following policy π.

11 / 24

Monte Carlo Estimation of Action Values (Q)

• MC is most useful when a model is not available.
• With model, state values are sufficient to determine policy.

• Choose action that leads to best reward/next state.

• Without model, need to also estimate action values.

→ We want to learn Q∗.

• Policy evaluation problem for action values:
• Estimate Qπ(s, a), the expected return starting from state s,

taking action a, then following policy π.

11 / 24

Monte Carlo Estimation of Action Values (Q)

• Average returns following first visit to s in each episode

where a was selected.

• Converges asymptotically if every state-action pair visited.
• Many relevant state-action pairs may never be visited.
• E.g., π is deterministic, observe returns from only one

action from each state→ no returns to average.

• Need to maintain exploration.
• Exploring starts: Every state-action pair has non-zero

probability of being starting pair.
• Alternative: Only consider policies that are stochastic with

nonzero probability of selecting all actions (later).

12 / 24

Monte Carlo Estimation of Action Values (Q)

• Average returns following first visit to s in each episode

where a was selected.

• Converges asymptotically if every state-action pair visited.

• Many relevant state-action pairs may never be visited.
• E.g., π is deterministic, observe returns from only one

action from each state→ no returns to average.

• Need to maintain exploration.
• Exploring starts: Every state-action pair has non-zero

probability of being starting pair.
• Alternative: Only consider policies that are stochastic with

nonzero probability of selecting all actions (later).

12 / 24

Monte Carlo Estimation of Action Values (Q)

• Average returns following first visit to s in each episode

where a was selected.

• Converges asymptotically if every state-action pair visited.
• Many relevant state-action pairs may never be visited.
• E.g., π is deterministic, observe returns from only one

action from each state→ no returns to average.

• Need to maintain exploration.
• Exploring starts: Every state-action pair has non-zero

probability of being starting pair.
• Alternative: Only consider policies that are stochastic with

nonzero probability of selecting all actions (later).

12 / 24

Monte Carlo Estimation of Action Values (Q)

• Average returns following first visit to s in each episode

where a was selected.

• Converges asymptotically if every state-action pair visited.
• Many relevant state-action pairs may never be visited.
• E.g., π is deterministic, observe returns from only one

action from each state→ no returns to average.

• Need to maintain exploration.
• Exploring starts: Every state-action pair has non-zero

probability of being starting pair.

• Alternative: Only consider policies that are stochastic with
nonzero probability of selecting all actions (later).

12 / 24

Monte Carlo Estimation of Action Values (Q)

• Average returns following first visit to s in each episode

where a was selected.

• Converges asymptotically if every state-action pair visited.
• Many relevant state-action pairs may never be visited.
• E.g., π is deterministic, observe returns from only one

action from each state→ no returns to average.

• Need to maintain exploration.
• Exploring starts: Every state-action pair has non-zero

probability of being starting pair.
• Alternative: Only consider policies that are stochastic with

nonzero probability of selecting all actions (later).

12 / 24

Monte Carlo Control
• Using MC estimation to approximate optimal policies.

• Policy evaluation (E):
• Complete policy evaluation using MC methods.

• Policy improvement (I):
• Greedify policy wrt current action-value function,

π(s) = argmax
a

Q(s, a).

13 / 24

Monte Carlo Control
• Using MC estimation to approximate optimal policies.

• Policy evaluation (E):
• Complete policy evaluation using MC methods.

• Policy improvement (I):
• Greedify policy wrt current action-value function,

π(s) = argmax
a

Q(s, a).

13 / 24

Monte Carlo Control
• Using MC estimation to approximate optimal policies.

• Policy evaluation (E):
• Complete policy evaluation using MC methods.

• Policy improvement (I):
• Greedify policy wrt current action-value function,

π(s) = argmax
a

Q(s, a).

13 / 24

Convergence of MC Control

• Greedified policy meets conditions for policy improvement:

Qπk(s, πk+1(s)) = Qπk(s,argmax
a

Qπk(s, a))

= max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) (*corrected)

= V πk(s).

• By policy improvement theorem, πk+1 better than πk.

• Assures convergence to optimal policy and value function.

→ Assumes exploring starts and infinite number of episodes.

• To solve the latter:
• Update only to a given level of performance (approx. Qπk).
• Alternate between evaluation & improvement per episode.

14 / 24

Convergence of MC Control

• Greedified policy meets conditions for policy improvement:

Qπk(s, πk+1(s)) = Qπk(s,argmax
a

Qπk(s, a))

= max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) (*corrected)

= V πk(s).

• By policy improvement theorem, πk+1 better than πk.

• Assures convergence to optimal policy and value function.

→ Assumes exploring starts and infinite number of episodes.

• To solve the latter:
• Update only to a given level of performance (approx. Qπk).
• Alternate between evaluation & improvement per episode.

14 / 24

Convergence of MC Control

• Greedified policy meets conditions for policy improvement:

Qπk(s, πk+1(s)) = Qπk(s,argmax
a

Qπk(s, a))

= max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) (*corrected)

= V πk(s).

• By policy improvement theorem, πk+1 better than πk.

• Assures convergence to optimal policy and value function.

→ Assumes exploring starts and infinite number of episodes.

• To solve the latter:
• Update only to a given level of performance (approx. Qπk).
• Alternate between evaluation & improvement per episode.

14 / 24

Convergence of MC Control

• Greedified policy meets conditions for policy improvement:

Qπk(s, πk+1(s)) = Qπk(s,argmax
a

Qπk(s, a))

= max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) (*corrected)

= V πk(s).

• By policy improvement theorem, πk+1 better than πk.

• Assures convergence to optimal policy and value function.

→ Assumes exploring starts and infinite number of episodes.

• To solve the latter:
• Update only to a given level of performance (approx. Qπk).
• Alternate between evaluation & improvement per episode.

14 / 24

Convergence of MC Control

• Greedified policy meets conditions for policy improvement:

Qπk(s, πk+1(s)) = Qπk(s,argmax
a

Qπk(s, a))

= max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) (*corrected)

= V πk(s).

• By policy improvement theorem, πk+1 better than πk.

• Assures convergence to optimal policy and value function.

→ Assumes exploring starts and infinite number of episodes.

• To solve the latter:
• Update only to a given level of performance (approx. Qπk).
• Alternate between evaluation & improvement per episode.

14 / 24

Convergence of MC Control

• Greedified policy meets conditions for policy improvement:

Qπk(s, πk+1(s)) = Qπk(s,argmax
a

Qπk(s, a))

= max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) (*corrected)

= V πk(s).

• By policy improvement theorem, πk+1 better than πk.

• Assures convergence to optimal policy and value function.

→ Assumes exploring starts and infinite number of episodes.

• To solve the latter:
• Update only to a given level of performance (approx. Qπk).

• Alternate between evaluation & improvement per episode.

14 / 24

Convergence of MC Control

• Greedified policy meets conditions for policy improvement:

Qπk(s, πk+1(s)) = Qπk(s,argmax
a

Qπk(s, a))

= max
a

Qπk(s, a)

≥ Qπk(s, πk(s)) (*corrected)

= V πk(s).

• By policy improvement theorem, πk+1 better than πk.

• Assures convergence to optimal policy and value function.

→ Assumes exploring starts and infinite number of episodes.

• To solve the latter:
• Update only to a given level of performance (approx. Qπk).
• Alternate between evaluation & improvement per episode.

14 / 24

Monte Carlo with Exploring Starts

• All returns averaged, irrespective of specific policy.

• Convergence to optimal fixed point seems inevitable.

• Open problem: Proving convergence to optimal fixed point.

15 / 24

Monte Carlo with Exploring Starts

• All returns averaged, irrespective of specific policy.

• Convergence to optimal fixed point seems inevitable.

• Open problem: Proving convergence to optimal fixed point.

15 / 24

Monte Carlo with Exploring Starts

• All returns averaged, irrespective of specific policy.

• Convergence to optimal fixed point seems inevitable.

• Open problem: Proving convergence to optimal fixed point.
15 / 24

Example: Blackjack
• Applying MC with exploring starts to blackjack problem.
• Use same initial policy.

• Find optimal policy and state-value function.

• Randomly select with equal prob. dealer’s cards, player’s

sum and whether or not player has usable ace.

16 / 24

Example: Blackjack
• Applying MC with exploring starts to blackjack problem.
• Use same initial policy.
• Find optimal policy and state-value function.

• Randomly select with equal prob. dealer’s cards, player’s

sum and whether or not player has usable ace.

16 / 24

Example: Blackjack
• Applying MC with exploring starts to blackjack problem.
• Use same initial policy.
• Find optimal policy and state-value function.

• Randomly select with equal prob. dealer’s cards, player’s

sum and whether or not player has usable ace.
16 / 24

On-Policy Monte Carlo Control

• How to avoid exploring starts?

• On-policy: Evaluate/improve policy while using for control.
• Need soft policies: π(s, a) > 0 for all s ∈ S and a ∈ A(s).
• E.g., An ε-greedy policy is an example of ε-soft policy,

π(s, a) ≥ ε

|A(s)|
, ∀ s, a, and some ε > 0.

17 / 24

On-Policy Monte Carlo Control

• How to avoid exploring starts?

• On-policy: Evaluate/improve policy while using for control.
• Need soft policies: π(s, a) > 0 for all s ∈ S and a ∈ A(s).

• E.g., An ε-greedy policy is an example of ε-soft policy,

π(s, a) ≥ ε

|A(s)|
, ∀ s, a, and some ε > 0.

17 / 24

On-Policy Monte Carlo Control

• How to avoid exploring starts?

• On-policy: Evaluate/improve policy while using for control.
• Need soft policies: π(s, a) > 0 for all s ∈ S and a ∈ A(s).
• E.g., An ε-greedy policy is an example of ε-soft policy,

π(s, a) ≥ ε

|A(s)|
, ∀ s, a, and some ε > 0.

17 / 24

On-Policy MC Control

• Encourages exploration of nongreedy actions.

18 / 24

Learning About π While Following π′

• Suppose episodes are generated from different policy.

• Can we learn the value function for a policy given only “off”
policy experience?
• Yes! Requires that π(s, a) > 0 implies π′(s, a) > 0.

• We have ns returns, Ri(s), from state s, with:
• probability pi(s) of being generated by π
• probability p′i(s) of being generated by π′

• Estimate using weighted importance sampling:

Vπ(s) ≈

∑ns
i=1

pi(s)
p′i(s)

Ri(s)∑ns
i=1

pi(s)
p′i(s)

• Depends on the environmental probabilities pi(s) and p′i(s).

• Normally considered unknown in MC applications.

19 / 24

Learning About π While Following π′

• Suppose episodes are generated from different policy.
• Can we learn the value function for a policy given only “off”

policy experience?

• Yes! Requires that π(s, a) > 0 implies π′(s, a) > 0.

• We have ns returns, Ri(s), from state s, with:
• probability pi(s) of being generated by π
• probability p′i(s) of being generated by π′

• Estimate using weighted importance sampling:

Vπ(s) ≈

∑ns
i=1

pi(s)
p′i(s)

Ri(s)∑ns
i=1

pi(s)
p′i(s)

• Depends on the environmental probabilities pi(s) and p′i(s).

• Normally considered unknown in MC applications.

19 / 24

Learning About π While Following π′

• Suppose episodes are generated from different policy.
• Can we learn the value function for a policy given only “off”

policy experience?
• Yes! Requires that π(s, a) > 0 implies π′(s, a) > 0.

• We have ns returns, Ri(s), from state s, with:
• probability pi(s) of being generated by π
• probability p′i(s) of being generated by π′

• Estimate using weighted importance sampling:

Vπ(s) ≈

∑ns
i=1

pi(s)
p′i(s)

Ri(s)∑ns
i=1

pi(s)
p′i(s)

• Depends on the environmental probabilities pi(s) and p′i(s).

• Normally considered unknown in MC applications.

19 / 24

Learning About π While Following π′

• Suppose episodes are generated from different policy.
• Can we learn the value function for a policy given only “off”

policy experience?
• Yes! Requires that π(s, a) > 0 implies π′(s, a) > 0.

• We have ns returns, Ri(s), from state s, with:
• probability pi(s) of being generated by π
• probability p′i(s) of being generated by π′

• Estimate using weighted importance sampling:

Vπ(s) ≈

∑ns
i=1

pi(s)
p′i(s)

Ri(s)∑ns
i=1

pi(s)
p′i(s)

• Depends on the environmental probabilities pi(s) and p′i(s).

• Normally considered unknown in MC applications.

19 / 24

Learning About π While Following π′

• Suppose episodes are generated from different policy.
• Can we learn the value function for a policy given only “off”

policy experience?
• Yes! Requires that π(s, a) > 0 implies π′(s, a) > 0.

• We have ns returns, Ri(s), from state s, with:
• probability pi(s) of being generated by π
• probability p′i(s) of being generated by π′

• Estimate using weighted importance sampling:

Vπ(s) ≈

∑ns
i=1

pi(s)
p′i(s)

Ri(s)∑ns
i=1

pi(s)
p′i(s)

• Depends on the environmental probabilities pi(s) and p′i(s).

• Normally considered unknown in MC applications.
19 / 24

Learning About π While Following π′

• However,

pi(st) =

Ti(s)−1∏
k=t

π(sk, ak)Psksakk+1

and

pi(st)

p′i(st)
=

∏Ti(s)−1
k=t π(sk, ak)Psksakk+1∏Ti(s)−1
k=t π′(sk, ak)Psksakk+1

=

Ti(s)−1∏
k=t

π(sk, ak)

π′(sk, ak)
.

→ The weights only depend on the two policies!

20 / 24

Learning About π While Following π′

• However,

pi(st) =

Ti(s)−1∏
k=t

π(sk, ak)Psksakk+1

and

pi(st)

p′i(st)
=

∏Ti(s)−1
k=t π(sk, ak)Psksakk+1∏Ti(s)−1
k=t π′(sk, ak)Psksakk+1

=

Ti(s)−1∏
k=t

π(sk, ak)

π′(sk, ak)
.

→ The weights only depend on the two policies!

20 / 24

Learning About π While Following π′

• However,

pi(st) =

Ti(s)−1∏
k=t

π(sk, ak)Psksakk+1

and

pi(st)

p′i(st)
=

∏Ti(s)−1
k=t π(sk, ak)Psksakk+1∏Ti(s)−1
k=t π′(sk, ak)Psksakk+1

=

Ti(s)−1∏
k=t

π(sk, ak)

π′(sk, ak)
.

→ The weights only depend on the two policies!

20 / 24

Off-Policy Monte Carlo Control

• Alternative to exploring starts and on-policy.

• On-policy: evaluate/improve policy while using for control.

• Off-policy: separates these two functions.

• Behaviour policy: generates behaviour in environment.
• Continually sample actions, ε-soft.

• Estimation policy: evaluated and improved.
• Deterministic, greedy.

• Two policies may be unrelated.

21 / 24

Off-Policy Monte Carlo Control

• Alternative to exploring starts and on-policy.

• On-policy: evaluate/improve policy while using for control.

• Off-policy: separates these two functions.
• Behaviour policy: generates behaviour in environment.

• Continually sample actions, ε-soft.

• Estimation policy: evaluated and improved.
• Deterministic, greedy.

• Two policies may be unrelated.

21 / 24

Off-Policy Monte Carlo Control

• Alternative to exploring starts and on-policy.

• On-policy: evaluate/improve policy while using for control.

• Off-policy: separates these two functions.
• Behaviour policy: generates behaviour in environment.

• Continually sample actions, ε-soft.

• Estimation policy: evaluated and improved.
• Deterministic, greedy.

• Two policies may be unrelated.

21 / 24

Off-Policy Monte Carlo Control

• Alternative to exploring starts and on-policy.

• On-policy: evaluate/improve policy while using for control.

• Off-policy: separates these two functions.
• Behaviour policy: generates behaviour in environment.

• Continually sample actions, ε-soft.

• Estimation policy: evaluated and improved.
• Deterministic, greedy.

• Two policies may be unrelated.

21 / 24

Off-Policy MC Control

• Method learns only from tails of episodes.
• Potentially cause slow learning.

22 / 24

Off-Policy MC Control

• Method learns only from tails of episodes.
• Potentially cause slow learning.

22 / 24

Example: Blackjack
• Estimate value of single state from off-policy data.

• Dealer is showing 2.
• Sum of player’s cards is 13.
• Player has usable ace.

• Data generated by starting in this state, hit or stick at

random with equal probability (behaviour policy).
• Target policy to stick only on sum of 20 or 21.

• Optimal value of state under target policy ≈ -0.27726.

23 / 24

Example: Blackjack
• Estimate value of single state from off-policy data.

• Dealer is showing 2.
• Sum of player’s cards is 13.
• Player has usable ace.

• Data generated by starting in this state, hit or stick at

random with equal probability (behaviour policy).
• Target policy to stick only on sum of 20 or 21.

• Optimal value of state under target policy ≈ -0.27726.

23 / 24

Example: Blackjack
• Estimate value of single state from off-policy data.

• Dealer is showing 2.
• Sum of player’s cards is 13.
• Player has usable ace.

• Data generated by starting in this state, hit or stick at

random with equal probability (behaviour policy).
• Target policy to stick only on sum of 20 or 21.

• Optimal value of state under target policy ≈ -0.27726.
23 / 24

Summary

• MC has several advantages over DP:
• Can learn directly from interaction with environment.
• No need for full models.
• No need to learn about ALL states.

• Less harm by Markovian violations (no bootstrapping).

• MC methods provide alternate policy evaluation process.
• Average many returns that start in a given state.

• Control methods and approximating action-value functions.

• MC intermix policy evaluation and policy improvement.

• One issue to watch for: maintaining sufficient exploration.
• Exploring starts.
• On-policy and off-policy methods.

24 / 24

Summary

• MC has several advantages over DP:
• Can learn directly from interaction with environment.
• No need for full models.
• No need to learn about ALL states.

• Less harm by Markovian violations (no bootstrapping).

• MC methods provide alternate policy evaluation process.
• Average many returns that start in a given state.

• Control methods and approximating action-value functions.

• MC intermix policy evaluation and policy improvement.

• One issue to watch for: maintaining sufficient exploration.
• Exploring starts.
• On-policy and off-policy methods.

24 / 24

Summary

• MC has several advantages over DP:
• Can learn directly from interaction with environment.
• No need for full models.
• No need to learn about ALL states.

• Less harm by Markovian violations (no bootstrapping).

• MC methods provide alternate policy evaluation process.
• Average many returns that start in a given state.

• Control methods and approximating action-value functions.

• MC intermix policy evaluation and policy improvement.

• One issue to watch for: maintaining sufficient exploration.
• Exploring starts.
• On-policy and off-policy methods.

24 / 24

Summary

• MC has several advantages over DP:
• Can learn directly from interaction with environment.
• No need for full models.
• No need to learn about ALL states.

• Less harm by Markovian violations (no bootstrapping).

• MC methods provide alternate policy evaluation process.
• Average many returns that start in a given state.

• Control methods and approximating action-value functions.

• MC intermix policy evaluation and policy improvement.

• One issue to watch for: maintaining sufficient exploration.
• Exploring starts.
• On-policy and off-policy methods.

24 / 24

