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Monte Carlo Methods

Monte Carlo (MC) methods are learning methods, used for

estimating value functions and discovering optimal policies.

Do not assume complete knowledge of environment.
— Learn from experience.
Sample sequences of states, actions and rewards.

e On-line experience: No model necessary, attains optimality.
o Simulated experience: No need for full model.

e Sample according to desired probability distributions.
Solve RL problem by averaging complete sample returns.

o Episodic tasks ensure well-defined returns are available.
e Incremental in an episode-by-episode sense.

e Update value estimates/policies after completion of episode.
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Monte Carlo Policy Evaluation

e Goal: Learn state-value function V™ (s) for given policy .

o Value of a state is the expected return (expected cumulative
future discounted reward) starting from s.
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Monte Carlo Policy Evaluation

Goal: Learn state-value function V™ (s) for given policy .
o Value of a state is the expected return (expected cumulative
future discounted reward) starting from s.
Given: Some number of episodes under = which contain s.

Idea: Average returns observed after visits to s.
— Average converges to expected value with 1 # returns.

e (Underlying idea to all Monte Carlo methods.)

Each occurrence of state s in an episode is called a visit.

e First-visit MC: Average returns for first time s visited in episode.
e Every-visit MC: Average returns for every time s visited in episode.

Both converge asymptotically.
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First-Visit Monte Carlo Policy Evaluation

Initialize:
7 +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) «+ an empty list, for all s € &

Repeat forever:
(a) Generate an episode using 7
(b) For each state s appearing in the episode:
R « return following the first occurrence of s
Append R to Returns(s)
V(s) « average(Returns(s))
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First-Visit Monte Carlo Policy Evaluation

Initialize:
7 +— policy to be evaluated
V « an arbitrary state-value function
Returns(s) «+ an empty list, for all s € &

Repeat forever:
(a) Generate an episode using 7
(b) For each state s appearing in the episode:
R « return following the first occurrence of s
Append R to Returns(s)
V(s) « average(Returns(s))

e Eachreturnis ani.i.d. estimate of V" (s).
e Every average is an unbiased estimate, s.d. of error falls as 1/+/n.
e Sequence of averages converges to expected value of V™ (s).



Example: Blackjack

e Goal: Card sum greater than dealer without exceeding 21.
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Example: Blackjack

Goal: Card sum greater than dealer without exceeding 21.
States (200 of them):
e Current sum (12-21).

e Dealer’'s showing card (ace-10).
¢ Do | have a useable ace?

Reward: +1 for winning, 0 for a draw, -1 for losing.
o All rewards within game are 0, do not discount (y = 0).

Actions:

o Stick (stop receiving cards).
¢ Hit (receive another card).

Policy: Stick if my sum is 20 or 21, otherwise hit.

— Find state-value function for policy by MC approach.
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Blackjack Value Functions

e Simulate many blackjack games using policy .
e Average returns following each state (first-visit MC).

After 10,000 episodes After 500,000 episodes

e Higher number of games (episodes), better approximation.

e Estimates for states with useable ace less certain.



Dynamic Programming vs. Monte Carlo

e Dynamic programming (DP): full knowledge of
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e e.g., blackjack, naturally formulated as episodic finite MDP
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Dynamic Programming vs. Monte Carlo

e Dynamic programming (DP): full knowledge of
environment.
e e.g., blackjack, naturally formulated as episodic finite MDP

e Player’'s sum is 14, chooses to stick.

e What is expected reward as function of dealer’s hand?

e Requires all expected rewards and transition probabilities to
be computed prior to applying DP— complex, error-prone.

— Generating sample games easy.

¢ MC methods can be better, even when complete
knowledge of environment’s dynamics is known.
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Backup Diagram for Monte Carlo

e Shows all transitions, leaf nodes from root node whose
rewards and estimated values contribute to update.
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Backup Diagram for Monte Carlo

e Shows all transitions, leaf nodes from root node whose
rewards and estimated values contribute to update.

Entire episode.

o Rather than one-step transitions.
Only one choice at each state.

e DP explores all possible transitions.
MC does not bootstrap.

¢ Independent estimates for each state.

Time required to estimate one state
independent of total number of states. III
terminal state
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The Power of Monte Carlo

e E.g., elastic membrane (Dirichlet Problem)
e How do we compute the shape of the surface?

— Geometry of wire frame is known.

/24



The Power of Monte Carlo

Relaxation

-

© Height at any point is average of heights in small circle

around point.

Kakutani’s algorithm, 1945
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The Power of Monte Carlo

Relaxation Kakutani’s algorithm, 1945
T //
e
1%
janlliard
[ v
L

© Height at any point is average of heights in small circle
around point.
e Solve by iterating, adjust towards average of neighbours.
® Expected value of height at boundary approximates height
of surface at starting point.
o Take random walk until reach boundary.
e Average boundary heights of many walks.
— Local consistency.
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Monte Carlo Estimation of Action Values (Q)

e MC is most useful when a model is not available.
¢ With model, state values are sufficient to determine policy.

e Choose action that leads to best reward/next state.
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Monte Carlo Estimation of Action Values (Q)

e MC is most useful when a model is not available.
¢ With model, state values are sufficient to determine policy.
e Choose action that leads to best reward/next state.
¢ Without model, need to also estimate action values.
— We want to learn Q~.
¢ Policy evaluation problem for action values:

e Estimate Q™ (s, a), the expected return starting from state s,
taking action «, then following policy .
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Monte Carlo Estimation of Action Values (Q)

e Average returns following first visit to s in each episode
where a was selected.
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Monte Carlo Estimation of Action Values (Q)

e Average returns following first visit to s in each episode
where a was selected.
e Converges asymptotically if every state-action pair visited.

o Many relevant state-action pairs may never be visited.
e E.g., 7 is deterministic, observe returns from only one
action from each state — no returns to average.

e Need to maintain exploration.
o Exploring starts: Every state-action pair has non-zero
probability of being starting pair.
o Alternative: Only consider policies that are stochastic with
nonzero probability of selecting all actions (later).
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Monte Carlo Control

e Using MC estimation to approximate optimal policies.

evaluation
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Monte Carlo Control

e Using MC estimation to approximate optimal policies.

evaluation
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e Policy evaluation (E):
e Complete policy evaluation using MC methods.
e Policy improvement (1):
o Greedify policy wrt current action-value function,
m(s) = argmax Q(s,a).
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Convergence of MC Control

o Greedified policy meets conditions for policy improvement:

Q™ (37 7Tk+1(s)) = Q™ (Sv argmax Q™ (37 CL))

= max@Q™(s,a)
a
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Convergence of MC Control

o Greedified policy meets conditions for policy improvement:

Q™ (s,mpr1(s)) = Q™ (s,argmax Q™ (s,a))
max Q™ (s,a)

Q™ (s, mr(s)) (*corrected)
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Convergence of MC Control

o Greedified policy meets conditions for policy improvement:

Q™ (s, me1(s)) = Q™ (s,argmax Q™ (s, a))
mng”’“(s,a)
Q™ (s, mr(s)) (*corrected)

= V7(s).

v

e By policy improvement theorem, =1 better than 7.

e Assures convergence to optimal policy and value function.
— Assumes exploring starts and infinite number of episodes.

¢ To solve the latter:

o Update only to a given level of performance (approx. Q7*).
o Alternate between evaluation & improvement per episode.
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Monte Carlo with Exploring Starts

Initialize, for all s € S, a € A(s):
()(s,a) «— arbitrary
m(8) «— arbitrary
Returns(s,a) «+ empty list

Repeat forever:
(a) Generate an episode using exploring starts and 7
(b) For each pair s, a appearing in the episode:
R «— return following the first occurrence of s, a
Append R to Returns(s,a)
Q(s,a) — average(Returns(s,a))
(c) For each s in the episode:
m(s) «— argmax, Q(s,a)
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Monte Carlo with Exploring Starts

Initialize, for all s € S, a € A(s):
()(s,a) «— arbitrary
m(s) « arbitrary
Returns(s,a) «+ empty list

Repeat forever:
(a) Generate an episode using exploring starts and
(b) For each pair s, a appearing in the episode:
R «— return following the first occurrence of s, a
Append R to Returns(s,a)
Q(s,a) — average(Returns(s,a))
(c) For each s in the episode:
m(s) «— argmax, Q(s,a)

¢ All returns averaged, irrespective of specific policy.
e Convergence to optimal fixed point seems inevitable.
e Open problem: Proving convergence to optimal fixed point.
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Example: Blackjack

e Applying MC with exploring starts to blackjack problem.
e Use same initial policy.
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Example: Blackjack
e Applying MC with exploring starts to blackjack problem.

e Use same initial policy.
e Find optimal policy and state-value function.

* *
T Vv
l21
STICK .f‘;
Usable T + &
ace {18 .
s -1
HIT 14 4
13
JiH
..... n
‘AZ345678810
To~
Ja1 ’
j20 E s .
STICK e !
No e 3 = &
usable 16 & o
115 > _35
ace HiT 14 & 4 . &
iz 0 &
e O 1 ey, &
A2345678910 hnw’. a
Dealer showing g rof."

¢ Randomly select with equal prob. dealer’s cards, player’s
sum and whether or not player has usable ace.
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On-Policy Monte Carlo Control

e How to avoid exploring starts?
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On-Policy Monte Carlo Control

e How to avoid exploring starts?
e On-policy: Evaluate/improve policy while using for control.

o Need soft policies: 7(s,a) > 0 forall s € S and a € A(s).
e E.g., An e-greedy policy is an example of e-soft policy,

w(s,a) > v s,a, and some € > 0.

|A(s)]”
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On-Policy MC Control

Initialize, for all s € S, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) «+ empty list
7 +— an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
R « return following the first occurrence of s,a
Append R to Returns(s,a)
Q(s, a) «— average(Returns(s,a))
(c) For each s in the episode:
a* — argmax, Q(s,a)
For all a € A(s):
1—-e+¢/|A(s)| ifa=a*
wiom) { e/|A(s)| if a # a*

e Encourages exploration of nongreedy actions.
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Learning About = While Following =’

e Suppose episodes are generated from different policy.
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Learning About = While Following =’

Suppose episodes are generated from different policy.
Can we learn the value function for a policy given only “off”
policy experience?

e Yes! Requires that 7 (s,a) > 0 implies 7’(s,a) > 0.

We have n, returns, R;(s), from state s, with:

e probability p;(s) of being generated by =

o probability p/(s) of being generated by =’
Estimate using weighted importance sampling:

7, B Ry (s)
e, )

Va(s) =
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Learning About = While Following =’

Suppose episodes are generated from different policy.
Can we learn the value function for a policy given only “off”
policy experience?

e Yes! Requires that 7 (s,a) > 0 implies 7’(s,a) > 0.

We have n, returns, R;(s), from state s, with:

e probability p;(s) of being generated by =

o probability p/(s) of being generated by =’
Estimate using weighted importance sampling:

7, B Ry (s)
e, )

Va(s) =

Depends on the environmental probabilities p;(s) and p;(s).

e Normally considered unknown in MC applications.
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Learning About = While Following =’

e However,
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Learning About = While Following =’

e However,
TZ(S)—l
pz(st) = H (Skvak)PSks k
k=t
and

Ti(s)—l Tz 1
pi(st) B Hk:t W(Sk,ak)Psksk . (s)— - Skjyak

/ - Ti(s)—1
Fo0 T PPy, i
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Learning About = While Following =’

e However,
TZ(S)—l
pz(st) = H (Skvak)Psks k
k=t
and

Ti(s)—1 T;(s)—1
pi(st) ILi= W(Sk’ak)PSksk 1 S ™ Skyak

p2(3t> Zi:(:)_l ﬂ’(sk,ak)P ay k=t

Sk8k+1

— The weights only depend on the two policies!

20/24



Off-Policy Monte Carlo Control

¢ Alternative to exploring starts and on-policy.

e On-policy: evaluate/improve policy while using for control.
o Off-policy: separates these two functions.
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Off-Policy Monte Carlo Control

¢ Alternative to exploring starts and on-policy.

e On-policy: evaluate/improve policy while using for control.
o Off-policy: separates these two functions.
o Behaviour policy: generates behaviour in environment.
e Continually sample actions, e-soft.
o Estimation policy: evaluated and improved.
e Deterministic, greedy.

e Two policies may be unrelated.
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Off-Policy MC Control

Initialize, for all s € S, a € A(s):
Q(s,a) + arbitrary
N(s,a) « 0 ; Numerator and
D(s,a) + 0 ; Denominator of Q(s,a)
7 4 an arbitrary deterministic policy

Repeat forever:
(a) Select a policy 7' and use it to generate an episode:
80,Q0,T1,81,01,T2,...,87—1,Qr-1, 7T, 8T
(b) 7 + latest time at which a, # m(s;)

(¢) For each pair s, a appearing in the episode at time 7 or later:

t + the time of first occurrence of s,a such that t > r
T—1 1
w4 [t weean
N(s,a) + N(s,a) + wR,
D(s,a) + D(s,a) +w
Qs,0) « B
(d) For each s € S:
7(s) ¢ arg max, Q(s,a)

22/24



Off-Policy MC Control

Initialize, for all s € S, a € A(s):
Q(s,a) + arbitrary
N(s,a) « 0 ; Numerator and
D(s,a) + 0 ; Denominator of Q(s,a)
7 4+— an arbitrary deterministic policy

Repeat forever:

(a) Select a policy 7' and use it to generate an episode:
80, @0, T1,81,01,72,..., 871,071, 7T, 8T

(b) 7 + latest time at which a, # m(s;)

(¢) For each pair s, a appearing in the episode at time 7 or later:
t + the time of first occurrence of s,a such that ¢t > 7

T—1 1

w4 [t weean
N(s,a) + N(s,a) + wR,
D(s,a) + D(s,a) +w
Qs,a) « He4

(d) For each s € S:
m(s) < arg max, Q(s,a)

e Method learns only from tails of episodes.
o Potentially cause slow learning.
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Example: Blackjack

e Estimate value of single state from off-policy data.
e Dealer is showing 2.
e Sum of player’s cards is 13.
e Player has usable ace.
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e Data generated by starting in this state, hit or stick at
random with equal probability (behaviour policy).
e Target policy to stick only on sum of 20 or 21.
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Example: Blackjack

e Estimate value of single state from off-policy data.
e Dealer is showing 2.
e Sum of player’s cards is 13.
¢ Player has usable ace.
e Data generated by starting in this state, hit or stick at
random with equal probability (behaviour policy).
e Target policy to stick only on sum of 20 or 21.

Mean
square
error -
(average over
100 runs)

Weighted importance sampling

10 100 1000 10,000

Episodes (log scale)

e Optimal value of state under target policy ~ -0.27726.
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Summary

e MC has several advantages over DP:

e Can learn directly from interaction with environment.
¢ No need for full models.
e No need to learn about ALL states.

e Less harm by Markovian violations (no bootstrapping).
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Summary

MC has several advantages over DP:

e Can learn directly from interaction with environment.
e No need for full models.
¢ No need to learn about ALL states.

e Less harm by Markovian violations (no bootstrapping).
MC methods provide alternate policy evaluation process.
e Average many returns that start in a given state.
Control methods and approximating action-value functions.
e MC intermix policy evaluation and policy improvement.
One issue to watch for: maintaining sufficient exploration.

e Exploring starts.
¢ On-policy and off-policy methods.
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