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Motivation

• Projected-Gradient Methods

3 Rewrite non-smooth problem as smooth constrained problem:

min
x∈C

f(x)

7 Only handles ‘simple’ constraints, e.g., bound constraints.

Õ Franke-Wolfe Algorithm: minimize linear function over C.

• Proximal-Gradient Methods

3 Generalizes projected-gradient:

min
x
f(x) + r(x),

where f is smooth, r is general convex function (proximable).

7 Dealing with r(x) = φ(Ax) difficult, even when φ simple.

Õ Alternating Direction Method of Multipliers

T TODAY: We focus on coordinate descent, which is for the case

where r is separable and f has some special structure.
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Coordinate Descent Methods

• Suitable for large-scale optimization (dimension d is large):

• Certain smooth (unconstrained) problems.

• Non-smooth problems with separable constraints/regularizers.

• e.g., `1-regularization, bound constraints

T Faster than gradient descent if iterations d times cheaper.
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Problems Suitable for Coordinate Descent
Coordinate update d times faster than gradient update for:

h1(x) = f(Ax) +

d∑
i=1

gi(xi), or h2(x) =
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj)

• f and fij smooth, convex

• A is a matrix

• {V,E} is a graph

• gi general non-degenerate convex functions

Examples h1: least squares, logistic regression, lasso, `2-norm SVMs.

e.g., min
x∈IRd

1

2
‖Ax− b‖2 + λ

d∑
i=1

|xi|.

Examples h2: quadratics, graph-based label prop., graphical models.

e.g., min
x∈IRd

1

2
xTAx+ bTx =

1

2

d∑
i=1

d∑
j=1

aijxixj +

d∑
i=1

bixi.
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Notation and Assumptions
We focus on the convex optimization problem

min
x∈IRd

f(x)

• ∇f coordinate-wise L-Lipschitz continuous

|∇if(x+ αei)−∇if(x)| ≤ L|α|

• f µ-strongly convex, i.e.,

x 7→ f(x)− µ

2
‖x‖2

is convex for some µ > 0.

• If f is twice-differentiable, equivalent to

∇2
ii f(x) ≤ L, ∇2 f(x) � µI.
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Coordinate Descent vs. Gradient Descent

xk+1 = xk − 1
L∇ikf(xk)eik xk+1 = xk − α∇f(xk)

• Global convergence rate for randomized ik selection [Nesterov]:

E[f(xk+1)]− f(x∗) ≤
(

1− µ

Ld

)
[f(xk)− f(x∗)]

• Global convergence rate for gradient descent:

f(xk+1)− f(x∗) ≤
(

1− µ

Lf

)
[f(xk)− f(x∗)]

• Since Ld ≥ Lf ≥ L, coordinate descent is slower per iteration, but d

coordinate iterations are faster than one gradient iteration.
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Proximal Coordinate Descent

min
x∈IRd

F (x) ≡ f(x) +
∑
i

gi(xi)

where f is smooth and gi might be non-smooth.

• e.g., `1-regularization, bound constraints

• Apply proximal-gradient style update,

xk+1 = prox 1
L
gik

[
xk − 1

L∇ikf(xk)eik

]
where

proxαg[y] = argmin
x∈IRd

1

2
‖x− y‖2 + αg(x).

• Convergence for randomized ik:

E[F (xk+1)]− F (x∗) ≤
(

1− µ

dL

) [
F (xk)− F (x∗)

]
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Sampling Rules

• Cyclic: Cycle through i in order, i.e., i1 = 1, i2 = 2, etc.

• Uniform random: Sample ik uniformly from {1, 2, . . . , d}.
• Lipschitz sampling: Sample ik proportional to Li.

• Gauss-Southwell: Select ik = argmaxi |∇if(xk)|.
• Gauss-Southwell-Lipschitz: Select ik = argmaxi

|∇if(xk)|√
Li

.Cyclic Coordinate Descent

Figure: Coordinate Descent
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Stochastic Coordinate Descent

Choose components i(j) randomly, independently at each iteration.
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Gauss-Southwell Rules

GSL: argmaxi
|∇if(xk)|√

Li
GS: argmaxi |∇if(xk)|

Intuition: if gradients are similar, more progress if Li is small.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

• Feasible for problems where A is super sparse or for a graph with

mean nNeighbours approximately equals maximum nNeighbours.

• Show GS and GSL up to d times faster than randomized by

measuring strong convexity in the 1-norm or L-norm, respectively.
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Exact Optimization

xk+1 = xk − αk∇ikf(xk)eik , for some ik

• Exact coordinate optimization chooses the step size minimizing f :

f(xk+1) = min
α
{f(xk − α∇ikf(xk)eik)}

• Alternatives:

• Line search: find α > 0 such that f(xk − α∇ikf(xk)eik) < f(xk).

• Select step size based on global knowledge of f , e.g., 1/L.
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Stochastic Dual Coordinate Ascent

• Suitable for large-scale supervised learning (large # loss functions n):

• Primal formulated as sum of convex loss functions.

• Operates on the dual.

T Achieves faster linear rate than SGD for smooth loss functions.

T Theoretically equivalent to SSG for non-smooth loss functions.
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The Big Picture...

• Stochastic Gradient Descent (SGD):

3 Strong theoretical guarantees.

7 Hard to tune step size (requires α→ 0).

7 No clear stopping criterion (Stochastic Sub-Gradient method (SSG)).

7 Converges fast at first, then slow to more accurate solution.

• Stochastic Dual Coordinate Ascent (SDCA):

3 Strong theoretical guarantees that are comparable to SGD.

3 Easy to tune step size (line search).

3 Terminate when the duality gap is sufficiently small.

3 Converges to accurate solution faster than SGD.
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Primal Problem

(P) min
w∈IRd

P (w) =
1

n

n∑
i=1

φi(w
Txi) +

λ

2
‖w‖2

where x1, . . . , xn vectors in IRd, φ1, . . . , φn sequence of scalar convex
functions, λ > 0 regularization parameter.

Examples: (for given labels y1, . . . , yn ∈ {−1, 1})

• SVMs: φi(a) = max{0, 1− yia} (L-Lipschitz)

• Regularized logistic regression: φi(a) = log(1 + exp(−yia))

• Ridge regression: φi(a) = (a− yi)2 (smooth)

• Regression: φi(a) = |a− yi|

• Support vector regression: φi(a) = max{0, |a− yi| − ν}
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Dual Problem

(P) min
w∈IRd

P (w) =
1

n

n∑
i=1

φi(w
Txi) +

λ

2
‖w‖2

(D) max
α∈IRn

D(α) =
1

n

n∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥∥ 1

λn

n∑
i=1

αixi

∥∥∥∥∥
2

where φ∗i (u) = maxz(zu− φi(z)) is the convex conjugate of φi.

• Different dual variable associated with each example in training set.
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Duality Gap

(P) min
w∈IRd

P (w) =
1

n

n∑
i=1

φi(w
Txi) +

λ

2
‖w‖2

(D) max
α∈IRn

D(α) =
1

n

n∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥∥ 1

λn

n∑
i=1

αixi

∥∥∥∥∥
2

• Define w(α) = 1
λn

∑n
i=1 αixi, then it is known that w(α∗) = w∗.

• P (w∗) = D(α∗), which implies P (w) ≥ D(α) for all w,α.

• Duality gap is defined by P (w(α))−D(α):

Õ Upper bound on the primal sub-optimality: P (w(α))− P (w∗).
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SDCA Algorithm

(1) Select a training example i at random.

(2) Do exact line search in the dual, i.e., find ∆αi:

maximize −φ∗i (−(α
(t−1)
i +∆αi))− λn

2 ‖w
(t−1)+(λn)−1∆αixi‖2

(3) Update the dual variable α(t) and the primal variable w(t):

α(t) ← α(t−1) + ∆αiei

w(t) ← w(t−1) + (λn)−1∆αixi

T Terminate when duality gap is sufficiently small.

T There are ways to get the rate without a line search that use the

primal gradient/subgradient directions.
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SGD vs. SDCA

• Alternative to SGD/SSG.

• If primal is smooth, get faster linear rate on duality gap than SGD.

• If primal is non-smooth, get sublinear rate on duality gap.

Õ SDCA has similar update to SSG on primal.

7 SSG sensitive to step-size.

3 Do line search in the dual with coordinate ascent.

• SDCA may not perform as well as SGD for first few epochs (full pass)

• SGD takes larger step size than SDCA earlier on, helps performance.

• Using modified SGD on first epoch followed by SDCA obtains faster

convergence when regularization parameter λ >> log(n)/n.
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Comparison of Rates
Lipschitz loss function (e.g., hinge-loss, φi(a) = max{0, 1− yia}):

Algorithm convergence type rate

SGD primal Õ(1/(λεp))

online EG (Collins et al., 2008) (for SVM) dual Õ(n/εd)

Stochastic Frank-Wolfe (Lacoste-Julien et al., 2012) primal-dual Õ(n + 1/(λε))

SDCA primal-dual Õ(n + 1/(λε)) or faster

Smooth loss function (e.g., ridge-regression, φi(a) = (a− yi)2):

Algorithm convergence type rate

SGD primal Õ(1/(λεp))

online EG (Collins et al., 2008) (for LR) dual Õ((n + 1/λ) log(1/εd))

SAG (Le Roux et al., 2012) (assuming n ≥ 8/(λγ)) primal Õ((n + 1/λ) log(1/εp))

SDCA primal-dual Õ((n + 1/λ) log(1/ε))

T Even if α is εd-sub-optimal in the dual, i.e.,

D(α)−D(α∗) ≤ εd,

the primal solution w(α) might be far from optimal.

T Bound on duality-gap is upper bound on primal sub-optimality.

T Recent results have shown improvements upon some of the rates in the above tables.
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Accelerated Coordinate Descent

• Inspired by Nesterov’s accelerated gradient method.

• Uses multi-step strategy, carries momentum from previous iterations.

• For accelerated randomized coordinate descent:

• e.g., for a convex function: O(1/k2) rate, instead of O(1/k).
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Block Coordinate Descent

xk+1 = xk − 1
L∇bkf(xk)ebk , for some block of indices bk

• Search along coordinate hyperplane.

• Fixed blocks, adaptive blocks.

• Randomized/proximal CD easily extended to the block case.

• For proximal case, choice of block must be consistent with

block-separable structure of regularization function g.
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Parallel Coordinate Descent

• Synchronous parallelism:

• Divide iterate updates between processors (block), followed by

synchronization step.

• Asynchronous parallelism:

• Each processor:

• Has access to x.

• Chooses an index i, loads components of x that are needed to compute

the gradient component ∇if(x), then updates the ith component xi.

• No attempt to coordinate or synchronize with other processors.

• Always using ‘stale’ x: convergence results restrict how stale.
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Discussion

• Coordinate Descent:

• Suitable for large-scale optimization (when d is large).

• Operates on the primal objective.

• Faster than gradient descent if iterations d times cheaper.

• Stochastic Dual Coordinate Ascent:

• Suitable for large-scale optimization (when n is large).

• Operates on the dual objective.

• If primal is smooth, obtains faster linear rate on duality gap than SGD.

• If primal is non-smooth, obtain sublinear rate on duality gap.

Õ Do line search in the dual with coordinate ascent.

• Outperforms SGD when relatively high solution accuracy is required.

• Terminate when duality-gap is sufficiently small.

• Variations: acceleration, block, parallel.
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