Adagrad, Adam and Online-to-Batch

Raunak Kumar

University of British Columbia

MLRG, 2017 Summer

July 4, 2017

Overview

© Adagrad
@ Motivation

@ Algorithm
@ Regret Bounds

© Adam

@ Motivation

o Algorithm

@ Regret Bounds

@ Comparison with Adagrad

© Online-To-Batch
@ Brief Overview

Adagrad

Adagrad
®000000
Motivation

Introduction

Let’s begin by motivating Adagrad from 2 different viewpoints:
@ Stochastic optimization (brief).

@ Online convex optimization.

Adagrad
0O@00000
Motivation

Stochastic Optimization

o We usually deal with sparse feature vectors.

@ Infrequently occurring features are highly informative.

@ Examples
— Blue sky vs orange sky.

— TF-IDF: Word w is important in document d if it occurs frequently
in d but not in the entire corpus.

Adagrad
0O@00000
Motivation

Stochastic Optimization

@ Standard stochastic gradient algorithms follow a predetermined
scheme.

@ lIgnore the characteristics of the observed data.

o Idea: Use a learning rate dependent on the frequency of the
features.

— Frequent feature — low learning rate.
— Infrequent feature — high learning rate.

Adagrad
[e]e] lele]ele)
Motivation

FTL

@ In online convex optimization, Follow The Leader (FTL) chooses the
next decision as the best one in hindsight

t
Xer1 = argmin E fs(x).
xek

@ We've seen that regrety = O(T) because FTL is “unstable”.

o Idea: Can we stabilize it by adding a regularizer?

Adagrad
[e]e]e] le]ele)
Motivation

Regularization Functions

@ We will consider regularization functions R : K — R.

@ R is strongly-convex, smooth and twice-differentiable.
e Thus, V2R(x) = 0.

Adagrad
[e]e]e]e] lele)
Motivation

RFTL

Algorithm 1 Regularized Follow The Leader

1: Input: Stepsize n > 0, regularization function R and a convex, com-
pact set decision set K

2: Let x; = argmin, o, {R(x)}.

3: for t=1to T do

4: Predict x;, observe f; and let V; = V£ (x;).

5: Update

t
Xep1 = arg min{z VIx+ R(x)}.
xek s=1

Adagrad
[e]e]e]e] lele)
Motivation

RFTL

Theorem (RFTL Regret)

T R - R
Q Yue K. regrety <20 || V:ell¥2 + (U)n(Xl)
t=1

Q@ IfVt. || V.|| < Gg, optimize n to get

regretr < 2DRGR\/ﬁ.

© Can also write

tr < 2 *2 B)
regretT < Tea/%(\/ Xt: I Velli2Br(ul|x:)

Adagrad
0000080
Motivation

Online Mirror Descent

Recall OMD from 3 weeks ago:

Algorithm 2 Online Mirror Descent (Agile version)

. Input: Stepsize n > 0, regularization function R
. Let y; s.t. VR(yl) =0.

. Let x; = arg min, c Br(x||y1)-

:fort=1 to T do

Predict x;, observe f; and let V; = V£ (x;).
Update y;41 as

vR(yt+1) = VR(Xt) — nvt
7 Project according to Bg

Xer1 = arg min Br(x||yt+1)-
NS

Adagrad
0000080
Motivation

Online Mirror Descent

e Suppose we choose R(x) = %||x — xo[|3 for an arbitrary xo € K.
What do we get?

Adagrad
0000080
Motivation

Online Mirror Descent

@ Suppose we choose R(x) = %||x — xo||3 for an arbitrary xo € K.

What do we get?

@ Online Gradient Descent!

@ Regret bound
1 *
regrett < ;D,% + 2772 Ve
t

<2GDV'T

Adagrad
0000080
Motivation

Online Mirror Descent

° R(x) = %HX — xol3- ° Projec.tion with respect to Bg
® VR(x) = x — xo. (exercises 2, 3)

e Update x¢ = arg min Br(x||y¢11)
xeK

- 1

Ve = Xeo1 = Ve = argmin 3 (x = yea) V2 R(2) (x — yeia)
xeK

xe = Mic(ye)

1 5
= argmin §||x —yir1ll5
NS

Thus, OMD is equivalent to OGD with this choice of R.

Adagrad
0O00000e
Motivation

Optimal Regularization

What have we seen so far?
@ Using a regularization function to make FTL stable.
e OGD is a special case of OMD with R(x) = %||x — xo|3.

@ The regularization function R affects our regret bound.

Question: Which regularization function should we choose to minimize
regret?

Adagrad
0O00000e
Motivation

Optimal Regularization

What have we seen so far?

@ Using a regularization function to make FTL stable.
e OGD is a special case of OMD with R(x) = %||x — xo|3.

@ The regularization function R affects our regret bound.

Question: Which regularization function should we choose to minimize
regret? Depends on IC and the cost functions.

So we'll learn the optimal regularizer online!

Adagrad
000
Algorithm

Preliminaries

@ Goal: Learn a regularizer that adapts to the sequence of cost
functions. In some sense, an optimal regularizer to use in hindsight.

@ We will consider all strongly convex regularizers with a fixed and
bounded Hessian in H

Vx € K. V2R(x) =V e H

where
H={XeR™: Tr(X)<1, X =0}

Adagrad
o] lo}

Algorithm

Adagrad

Algorithm 3 AdaGrad: Adaptive (sub)Gradient Method (Full Matrix Ver-
sion)

. Input: Stepsize n >0, 6 >0, x; € K.

. Initialize: Sg = Gp = 0.

:fort=1 to T do

Predict x;, observe loss f; and let Vi = V£ (x).
Update

St - St—l + VtVtT
Ge = 57 401
Yt41 = Xt — UGt_IVt

Xer1 = argmin ||x — Yt+1||%:t
x€K

Adagrad
ooe
Algorithm

Adagrad

Algorithm 4 AdaGrad: Adaptive (sub)Gradient Method (Diagonal Ver-
sion)

. Input: Stepsize n > 0,6 >0, x; € K.

. Initialize: So = Gp = 0.

. Initialize: S1.0 = 0.

:fort=1 to T do

Predict x;, observe loss f; and let V; = Vf(x;).
Update

Sl:t = [Sl:t—lvt]
Ht,i = ||51:t,/ 2

G; = diag(H;) + 6/
Yt+1 = X¢ — UGt_IVt

Xer1 = argmin ||x — }’t+1||%:t
xEKX

Adagrad
@00
Regret Bounds

Regret

We will show the following regret bound

Theorem

Let{x;} be the sequence of decisions defined by AdaGrad.
Let D = max,ex ||u — x1||2- Choose § = ﬁ, n=D.
Then, for any x* € K

regret(AdaGrad) < 2D Frpeug{zt: IVellif +1

Adagrad

oeo
Regret Bounds

Optmial Regularizer

Proposition

(Exercise 11) Let A = 0. Consider the following problem

minimize: Tr(XA)
subject to: X =0
Tr(X) <1

Then, minimizer is X = A2 / Tr(Az) and the minimum objective value is
Tr2(Az).

Adagrad

oeo
Regret Bounds

Optmial Regularizer

) \/minHeHZ IVell? = Tr(Gr — 81) = Tr(Gr) — on.
t

@ Optimial regularizer: (Gt — d1)/ Tr(Gt — 61).

Adagrad
oeo
Regret Bounds

Optmial Regularizer

IVellif = VIH'V,
YVl => VIHV.
t t
= Tr(V[H 'V,
t
= Tr(H'V:V])
t
=Tr(>_H'V.V])
t
=Tr(H 'Y V.V])
t

= Tr(H *(Gr — 61)?)

Adagrad

oeo
Regret Bounds

Optmial Regularizer

Proof.

Thus, we can rewrite our objective as

. *2 - -1 _ 2
,gggEIIVtIIH = min Tr(H~*(Gr = 81)%).

Plugging in A = (Gt — 61)? in the previous proposition yields the
result. OJ

Adagrad
ooe
Regret Bounds

Proof of Regret

Based on the corollary, it suffices to prove

regrett < 2DTr(G7) = 2D\/minHeH S IVelli? + 2nDé
t

Adagrad
ooe
Regret Bounds

Proof of Regret

Using first order definition of convexity,

f(x) — F(x*) < V] (¢ — x°)
Thus, we can bound the total regret as

regrett = Z fr(x) — i (x¥)

t
<3SV (%~ x")
t

Goal: Split this bound further into 2 terms and bound each of them
separately. O

Adagrad
ooe
Regret Bounds

Proof of Regret

Using definition of y;,1, we get

Ver1 — X =xp — x* — nGt_IVt
Ge(Yer1 — x) = Ge(xe — x*) =0V,
(Yer1 — X*)TGt()/tJrl —x") = (xt — X*)TGt(Xt - x")

— V] (% — x*) +*VI GV,

Using Pythagoras’ Theorem
yerr = x*N1& = lIxers — x*IIE,

in the above, we get

* — 1 * *
VI = x) < 5VT67 Vet oo (e = X7l = llxe = x°I%)

Adagrad
ooe

Regret Bounds

Proof of Regret

Thus, we have

Now, we proceed by bounding the first 2 terms in the inequality to get
our result.

O

v

Adagrad

ooe
Regret Bounds

Proof of Regret

Lemma

.
> VG V. <2Tr(Gr)

t=1

Proof Sketch: Induction and use that for A > B = 0,

2Tr((A— B)?) + Tr(A2B) < 2Tr(A?)

Adagrad
ooe
Regret Bounds

Proof of Regret

Lemma

T
Z — x)T(G; — Gi_1)(xe — x*) < D*Tr(Gr)

o

Proof sketch: Use that for A = 0, Amax(A) < Tr(A) and linearity of
trace. O

v

Adagrad
ooe
Regret Bounds

Proof of Regret

FINALLY(!), we get
UORISEIRHE 1

1 1
<nTr(Gr) + ZD2 Tr(Gr) + 277502 (2)

< 2DTr(Gr) (3)

Adam

Motivation

Key ldea

@ Adagrad accumulates the squared gradients and Gy increases
monotonically.

@ The learning rate eventually becomes too small.
o Idea: Use a decaying average!

@ Examples: Adadelta, RMSProp, etc.

Algorithm

Adam

@ Adam: Adaptive Moment Estimation.

o It estimates the mean (first moment) and variance (second moment)
of the gradients.
o Keeps track of

- Exponentially decaying average of past squared gradients v;
- Exponentially decaying average of past gradients m;

Algorithm

Adam

Algorithm 5 Adam: Adaptive Moment Estimation

1: Input: Stepsize 1 > 0, decay rates (31, 2, € >0, and x; € K.
2: Intialize: First moment my = 0, second moment vy = 0.
3:fort=1 to T do

4 Predict x;, observe loss f; and let Vi = V£ (x).

5 Update

my = ﬁlmt—l + (1 - ﬁl)vt
Ve = 52Vt71 + (1 - 52)V$

~ me
my =
1-pf
A Vi
Vi =
1-p3

Algorithm

Bias Correction

o Let V; = Vf;(x:) and assume each V, is a draw from some
underlying distribution.

@ We estimate its second raw moment as
t .
vi=PBve 1+ (1= BR)Vi=(1-5)> BV
i=1

e We want to compare estimate E[v;] with true E[V?] and correct for
the mismatch (bias correction).

Algorithm

Bias Correction

Elvd = E[(1 -)Y 557V

= E[VI(1-5)> B +c

i=1
= E[Vi1-53) +c

e If E[V?] is stationary, then ¢ = 0 and we divide by 1 — 3 to correct
for the bias.

@ Otherwise, 1 should be chosen to assign small weights to gradients
too far in the past.

Regret Bounds

Regret

Assume

@ f; has bounded gradients: ||fy(x)||> < G and ||f(x)||cc < Goo

@ Distance between x; generated by Adam is bounded:
VY, m € [T]. ||xn — Xxmll2 < D and ||x, — Xm||co < Do

Q fi, 5 €[0,1] and LL <1

VB2
Q o= %
Q Bi:= BiAEL for A € (0,1)
Then

VT > 1, regretr = O(V'T)

Regret Bounds

Average Regret

Corollary

Assume
@ f; has bounded gradients: ||f;(x)||2 < G and ||f;(X)]lc0 < Go

@ Distance between x; generated by Adam is bounded:
Vn,m € [T]. ||xn — Xmll2 < D and ||xn — Xm||oo < Do

Then

regrett

vT >1
=1, T

Comparison with Adagrad

Comparison with Adagrad

Choose 31 =0, B, — 1 and stepsize 1; = t7

@ Then, I|m V=1 Z V2.

@ Thus, the update is
-1
Xt41 = Xt — ntiivt
VTV
t=1
@ Note that bias correction is important for this comparison.

Comparison with Adagrad

Experiments

MNIST Logistic Regression IMDB BoW feature Logistic Regression

0. 0.!
AdaGrad | —— Adagrad+dropout
i‘::r:e“e“"’ waﬁ — RMSProp+dropout
06 0.45 | A ﬂ — SGDNesterov+dropout
\‘ MW Adam-+dropout
0.40) Iy
| W) I W I
+~ 05} % I\ \ |
¢ ¥
e 20.35]
€ 5
= 0.4] g
0.30)
03
0.25]
0
o 5 10 15 20 25 30 35 40 45 o 20 40 60 80 100 120 140 160
iterations over entire dataset iterations over entire dataset

Figure 1: Logistic regression training negative log likelihood on MNIST images and IMDB movie
reviews with 10,000 bag-of-words (BoW) feature vectors.

@ Adagrad performs well in case sparse features and gradients.

@ Adam performs well always?

Comparison with Adagrad

Experiments

5 CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet
— AdaGrad R — AdaGrad
— AdaGrad+dropout 10 — AdaGrad+dropout
— SGDNesterov — SGDNesterov
2.5] SGDNesterov+dropout 10t SGDNesterov+dropout|
— Adam — Adam
Adam-+dropout Adam-+dropout

training cost
5

training cost

%30 05 1.0 15 2.0 25 3.0 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.

(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

@ Adam reduces minibatch variance through first moment.

@ This is important in the case of CNNs.

Online-To-Batch

Online-To-Batch
[Je]
Brief Overview

Introduction

Given:

e Training set S = ((x1,y1), (%2, ¥2), - .-, (x7, ¥T)).

@ Online learner A which constructs a sequence of models
hy, hoy ... hT.

Goal: Construct a model hs based on {h;}] ;.

Online-To-Batch
oe
Brief Overview

Ideas

Possible conversion strategies:
@ Return the final model ht.

Online-To-Batch
oe
Brief Overview

Ideas

Possible conversion strategies:
@ Return the final model ht.

@ Return the longest surviving model.

Online-To-Batch
oe
Brief Overview

Ideas

Possible conversion strategies:
@ Return the final model ht.
@ Return the longest surviving model.

© Return h; which performs best on a validation set.

Online-To-Batch
oe
Brief Overview

Ideas

Possible conversion strategies:
@ Return the final model ht.
@ Return the longest surviving model.
© Return h; which performs best on a validation set.
@ Randomly choose h; from {h; : t € [T]}.

Online-To-Batch
oe
Brief Overview

Ideas

Possible conversion strategies:
@ Return the final model ht.
@ Return the longest surviving model.
© Return h; which performs best on a validation set.
@ Randomly choose h; from {h; : t € [T]}.
© Average over the models in some way.
O Cutoff-Averaging.

References

B

Elad Hazan
Introduction to Online Convex Optimization
Foundations and Trends in Optimization, vol 2, no. 3 — 4, pp. 157 — 325, 2015.

Duchi, Hazan, Singer
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
Journal of Machine Learning Research, vol 12(Jul), pp. 2121 — 2159, 2011.

Sebastian Ruder
An Overview of Gradient Descent Optimization Algorithms.
arXiv 1609.04747

Kingma, Ba
Adam: A Method For Stochastic Optmization
ICLR, 2015.

Shivani Agarwal
Online to Batch Conversions
EO: 370 Statistical Learning Theory, 2013.

Shivani Agarwal
From Online to Batch Learning with Cutoff-Averaging
NIPS, 2008.

The End

	Adagrad
	Motivation
	Algorithm
	Regret Bounds

	Adam
	Motivation
	Algorithm
	Regret Bounds
	Comparison with Adagrad

	Online-To-Batch
	Brief Overview

