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Motivation

Introduction

Let’s begin by motivating Adagrad from 2 different viewpoints:

Stochastic optimization (brief).

Online convex optimization.
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Motivation

Stochastic Optimization

We usually deal with sparse feature vectors.

Infrequently occurring features are highly informative.

Examples

– Blue sky vs orange sky.
– TF-IDF: Word w is important in document d if it occurs frequently

in d but not in the entire corpus.
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Motivation

Stochastic Optimization

Standard stochastic gradient algorithms follow a predetermined
scheme.

Ignore the characteristics of the observed data.

Idea: Use a learning rate dependent on the frequency of the
features.

– Frequent feature → low learning rate.
– Infrequent feature → high learning rate.
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Motivation

FTL

In online convex optimization, Follow The Leader (FTL) chooses the
next decision as the best one in hindsight

xt+1 = arg min
x∈K

t∑
s=1

fs(x).

We’ve seen that regretT = O(T ) because FTL is “unstable”.

Idea: Can we stabilize it by adding a regularizer?
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Motivation

Regularization Functions

We will consider regularization functions R : K → R.

R is strongly-convex, smooth and twice-differentiable.

Thus, ∇2R(x) � 0.
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Motivation

RFTL

Algorithm 1 Regularized Follow The Leader

1: Input: Stepsize η > 0, regularization function R and a convex, com-
pact set decision set K

2: Let x1 = arg minx∈K{R(x)}.
3: for t = 1 to T do
4: Predict xt , observe ft and let ∇t = ∇ft(xt).
5: Update

xt+1 = arg min
x∈K

{
t∑

s=1

∇T
s x + R(x)}.
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Motivation

RFTL

Theorem (RFTL Regret)

1 ∀u ∈ K. regretT ≤ 2η
T∑
t=1
‖∇t‖∗2t +

R(u)− R(x1)

η
.

2 If ∀t. ‖∇t‖∗t ≤ GR , optimize η to get

regretT ≤ 2DRGR

√
2T .

3 Can also write

regretT ≤ max
u∈K

√
2
∑
t

‖∇t‖∗2t BR(u‖xt).
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Motivation

Online Mirror Descent

Recall OMD from 3 weeks ago:

Algorithm 2 Online Mirror Descent (Agile version)

1: Input: Stepsize η > 0, regularization function R
2: Let y1 s.t. ∇R(y1) = 0.
3: Let x1 = arg minx∈K BR(x‖y1).
4: for t = 1 to T do
5: Predict xt , observe ft and let ∇t = ∇ft(xt).
6: Update yt+1 as

∇R(yt+1) = ∇R(xt)− η∇t .

7: Project according to BR

xt+1 = arg min
x∈K

BR(x‖yt+1).
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Motivation

Online Mirror Descent

Suppose we choose R(x) = 1
2‖x − x0‖2

2 for an arbitrary x0 ∈ K.
What do we get?
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Motivation

Online Mirror Descent

Suppose we choose R(x) = 1
2‖x − x0‖2

2 for an arbitrary x0 ∈ K.
What do we get?

Online Gradient Descent!

Regret bound

regretT ≤
1

η
D2

R + 2η
∑
t

‖∇t‖∗2t

≤ 2GD
√
T
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Motivation

Online Mirror Descent

R(x) = 1
2‖x − x0‖2

2.

∇R(x) = x − x0.

Update

yt = xt−1 − η∇t−1

xt = ΠK(yt)

Projection with respect to BR

(exercises 2, 3)

xt = arg min
x∈K

BR(x‖yt+1)

= arg min
x∈K

1

2
(x − yt+1)T∇2R(z)(x − yt+1)

= arg min
x∈K

1

2
‖x − yt+1‖2

2

Thus, OMD is equivalent to OGD with this choice of R.



Adagrad Adam Online-To-Batch

Motivation

Optimal Regularization

What have we seen so far?

Using a regularization function to make FTL stable.

OGD is a special case of OMD with R(x) = 1
2‖x − x0‖2

2.

The regularization function R affects our regret bound.

Question: Which regularization function should we choose to minimize
regret?
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Motivation

Optimal Regularization

What have we seen so far?

Using a regularization function to make FTL stable.

OGD is a special case of OMD with R(x) = 1
2‖x − x0‖2

2.

The regularization function R affects our regret bound.

Question: Which regularization function should we choose to minimize
regret? Depends on K and the cost functions.

So we’ll learn the optimal regularizer online!
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Algorithm

Preliminaries

Goal: Learn a regularizer that adapts to the sequence of cost
functions. In some sense, an optimal regularizer to use in hindsight.

We will consider all strongly convex regularizers with a fixed and
bounded Hessian in H

∀x ∈ K. ∇2R(x) = ∇2 ∈ H

where
H = {X ∈ Rn×n : Tr(X ) ≤ 1, X � 0}
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Algorithm

Adagrad

Algorithm 3 AdaGrad: Adaptive (sub)Gradient Method (Full Matrix Ver-
sion)

1: Input: Stepsize η > 0, δ > 0, x1 ∈ K.
2: Initialize: S0 = G0 = 0.
3: for t = 1 to T do
4: Predict xt , observe loss ft and let ∇t = ∇ft(xt).
5: Update

St = St−1 +∇t∇T
t

Gt = S
1
2
t +δI

yt+1 = xt − ηG−1
t ∇t

xt+1 = arg min
x∈K

‖x − yt+1‖2
Gt
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Algorithm

Adagrad

Algorithm 4 AdaGrad: Adaptive (sub)Gradient Method (Diagonal Ver-
sion)

1: Input: Stepsize η > 0, δ > 0, x1 ∈ K.
2: Initialize: S0 = G0 = 0.
3: Initialize: S1:0 = 0.
4: for t = 1 to T do
5: Predict xt , observe loss ft and let ∇t = ∇ft(xt).
6: Update

S1:t = [S1:t−1∇t ]

Ht,i = ‖S1:t,i‖2

Gt = diag(Ht) + δI

yt+1 = xt − ηG−1
t ∇t

xt+1 = arg min
x∈K

‖x − yt+1‖2
Gt
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Regret Bounds

Regret

We will show the following regret bound

Theorem

Let{xt} be the sequence of decisions defined by AdaGrad.
Let D = maxu∈K ‖u − x1‖2. Choose δ = 1

2nD , η = D.
Then, for any x∗ ∈ K

regretT (AdaGrad) ≤ 2D

√
min
H∈H

∑
t

‖∇t‖∗2H + 1
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Regret Bounds

Optmial Regularizer

Proposition

(Exercise 11) Let A � 0. Consider the following problem

minimize: Tr(X−1A)

subject to: X � 0

Tr(X ) ≤ 1

Then, minimizer is X = A
1
2 /Tr(A

1
2 ) and the minimum objective value is

Tr2(A
1
2 ).
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Regret Bounds

Optmial Regularizer

Corollary

1

√
minH∈H

∑
t
‖∇t‖∗2H = Tr(GT − δI ) = Tr(GT )− δn.

2 Optimial regularizer: (GT − δI )/Tr(GT − δI ).
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Regret Bounds

Optmial Regularizer

Proof.

‖∇t‖∗2H = ∇T
t H
−1∇t∑

t

‖∇t‖∗2H =
∑
t

∇T
t H
−1∇t

=
∑
t

Tr(∇T
t H
−1∇t)

=
∑
t

Tr(H−1∇t∇T
t )

= Tr(
∑
t

H−1∇t∇T
t )

= Tr(H−1
∑
t

∇t∇T
t )

= Tr(H−1(GT − δI )2)
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Regret Bounds

Optmial Regularizer

Proof.

Thus, we can rewrite our objective as

min
H∈H

∑
t

‖∇t‖∗2H = min
H∈H

Tr(H−1(GT − δI )2).

Plugging in A = (GT − δI )2 in the previous proposition yields the
result.
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Regret Bounds

Proof of Regret

Based on the corollary, it suffices to prove

Lemma

regretT ≤ 2DTr(GT ) = 2D
√

minH∈H
∑
t
‖∇t‖∗2H + 2nDδ
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Regret Bounds

Proof of Regret

Proof.

Using first order definition of convexity,

f (xt)− f (x∗) ≤ ∇T
t (xt − x∗)

Thus, we can bound the total regret as

regretT =
∑
t

ft(xt)− ft(x
∗)

≤
∑
t

∇T
t (xt − x∗)

Goal: Split this bound further into 2 terms and bound each of them
separately.
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Regret Bounds

Proof of Regret

Proof.

Using definition of yt+1, we get

yt+1 − x∗ = xt − x∗ − ηG−1
t ∇t

Gt(yt+1 − x∗) = Gt(xt − x∗)− η∇t

(yt+1 − x∗)TGt(yt+1 − x∗) = (xt − x∗)TGt(xt − x∗)

− 2η∇T
t (xt − x∗) + η2∇T

t G
−1
t ∇t

Using Pythagoras’ Theorem

‖yt+1 − x∗‖2
Gt
≥ ‖xt+1 − x∗‖2

Gt

in the above, we get

∇T
t (xt − x∗) ≤ η

2
∇T

t G
−1
t ∇t +

1

2η
(‖xt − x∗‖2

Gt
− ‖xt − x∗‖2

Gt
)
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Regret Bounds

Proof of Regret

Proof.

Thus, we have

∑
t

ft(xt)− ft(x
∗) ≤ η

2

T∑
t=1

∇T
t G
−1
t ∇t

+
1

2η

T∑
t=1

(xt − x∗)T (Gt − Gt−1(xt − x∗)

+
δ

2η
D2

Now, we proceed by bounding the first 2 terms in the inequality to get
our result.
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Regret Bounds

Proof of Regret

Lemma

T∑
t=1

∇T
t G
−1
t ∇t ≤ 2Tr(GT )

Proof.

Proof Sketch: Induction and use that for A � B � 0,

2Tr((A− B)
1
2 ) + Tr(A

1
2 B) ≤ 2Tr(A

1
2 )
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Regret Bounds

Proof of Regret

Lemma

T∑
t=1

(xt − x∗)T (Gt − Gt−1)(xt − x∗) ≤ D2Tr(GT )

.

Proof.

Proof sketch: Use that for A � 0, λmax(A) ≤ Tr(A) and linearity of
trace.
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Regret Bounds

Proof of Regret

Proof.

FINALLY(!), we get∑
t

ft(xt)− ft(x
∗) ≤

∑
t

∇T
t (xt − x∗) (1)

≤ ηTr(GT ) +
1

2η
D2Tr(GT ) +

1

2η
δD2 (2)

≤ 2DTr(GT ) (3)
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Motivation

Key Idea

Adagrad accumulates the squared gradients and GT increases
monotonically.

The learning rate eventually becomes too small.

Idea: Use a decaying average!

Examples: Adadelta, RMSProp, etc.



Adagrad Adam Online-To-Batch

Algorithm

Adam

Adam: Adaptive Moment Estimation.

It estimates the mean (first moment) and variance (second moment)
of the gradients.

Keeps track of

- Exponentially decaying average of past squared gradients vt
- Exponentially decaying average of past gradients mt
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Algorithm

Adam

Algorithm 5 Adam: Adaptive Moment Estimation

1: Input: Stepsize η > 0, decay rates β1, β2, ε > 0 , and x1 ∈ K.
2: Intialize: First moment m0 = 0, second moment v0 = 0.
3: for t = 1 to T do
4: Predict xt , observe loss ft and let ∇t = ∇ft(xt).
5: Update

mt = β1mt−1 + (1− β1)∇t

vt = β2vt−1 + (1− β2)∇2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

xt+1 = xt − η
m̂t√
v̂t + ε
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Algorithm

Bias Correction

Let ∇t = ∇ft(xt) and assume each ∇t is a draw from some
underlying distribution.

We estimate its second raw moment as

vt = β2vt−1 + (1− β2)∇2
t = (1− β2)

t∑
i=1

βt−i
2 ∇

2
i

We want to compare estimate E [vt ] with true E [∇2
t ] and correct for

the mismatch (bias correction).
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Algorithm

Bias Correction

E [vt ] = E [(1− β2)
t∑

i=1

βt−i
2 ∇

2
i ]

= E [∇2
t ](1− β2)

t∑
i=1

βt−i
2 + c

= E [∇2
t ](1− βt

2) + c

If E [∇2
i ] is stationary, then c = 0 and we divide by 1− βt

2 to correct
for the bias.

Otherwise, β1 should be chosen to assign small weights to gradients
too far in the past.
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Regret Bounds

Regret

Theorem

Assume

1 ft has bounded gradients: ‖ft(x)‖2 ≤ G and ‖ft(x)‖∞ ≤ G∞
2 Distance between xt generated by Adam is bounded:
∀n,m ∈ [T ]. ‖xn − xm‖2 ≤ D and ‖xn − xm‖∞ ≤ D∞

3 β1, β2 ∈ [0, 1] and
β2

1√
β2
< 1

4 αt = α√
t

5 β1,t = β1λ
t−1 for λ ∈ (0, 1)

Then
∀T ≥ 1, regretT = O(

√
T )

.
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Regret Bounds

Average Regret

Corollary

Assume

1 ft has bounded gradients: ‖ft(x)‖2 ≤ G and ‖ft(x)‖∞ ≤ G∞
2 Distance between xt generated by Adam is bounded:
∀n,m ∈ [T ]. ‖xn − xm‖2 ≤ D and ‖xn − xm‖∞ ≤ D∞

Then

∀T ≥ 1,
regretT

T
= O(

1√
T

)
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Comparison with Adagrad

Comparison with Adagrad

Choose β1 = 0, β2 → 1 and stepsize ηt = t
−1

2 .

Then, lim
β2→1

v̂t = 1
t

T∑
t=1
∇2

t .

Thus, the update is

xt+1 = xt −
ηt

−1
2√

t−1
T∑
t=1
∇T

t

∇t

Note that bias correction is important for this comparison.
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Comparison with Adagrad

Experiments

Adagrad performs well in case sparse features and gradients.

Adam performs well always?
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Comparison with Adagrad

Experiments

Adam reduces minibatch variance through first moment.

This is important in the case of CNNs.
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Online-To-Batch
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Brief Overview

Introduction

Given:

Training set S = ((x1, y1), (x2, y2), . . . , (xT , yT )).

Online learner A which constructs a sequence of models
h1, h2, . . . , hT .

Goal: Construct a model hS based on {ht}Tt=1.
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Brief Overview

Ideas

Possible conversion strategies:

1 Return the final model hT .

2 Return the longest surviving model.

3 Return ht which performs best on a validation set.

4 Randomly choose ht from {ht : t ∈ [T ]}.
5 Average over the models in some way.

6 Cutoff-Averaging.
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