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Quadratic Approximations

@ Recall gradient descent is based on quadratic approximation,

1
xK*1 = argmin {f(xk) + (F(xF), x — xK) 4+ —||x — ka2} :
xelR 2
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Quadratic Approximations

@ Recall gradient descent is based on quadratic approximation,

xK*1 = argmin {f(xk) + (F/(x*), x — xKy + iHx — ka2} :
xeIR9 20
@ We've discussed a variety of variations on this:

Add extrapolation: momentum/heavy-ball/Nesterov.

Replace ||x — x¥||? with [|x — x¥||2,;: Newton.

Replace f/(x¥) with gk € 9f(x¥): subgradient.

Replace f'(x*) with f/(x¥): stochastic gradient.

Replace f'(x¥) with memory of old gradients: SAG.
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Quadratic Approximations

@ Recall gradient descent is based on quadratic approximation,

X

k1 — argmin {f(xk) + (F/(xF), x = x¥) + QLHX - XkH2} :
K

xeIR9Y

@ We've discussed a variety of variations on this:

Add extrapolation: momentum/heavy-ball/Nesterov.
Replace ||x — x¥||? with [|x — x¥||2,;: Newton.

Replace f/(x¥) with gk € 9f(x¥): subgradient.

Replace f'(x*) with f/(x¥): stochastic gradient.

Replace f'(x¥) with memory of old gradients: SAG.
Replace IRY with convex set C: projected gradient.

Add extra non-smooth term g(x): proximal-gradient.
Adding more terms and a A update: ADMM.

Use compact C and remove ||x — x*||? term: Frank-Wolfe.
Replace f'(x*) with 75-’(X")ej: coordinate descent.
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Quadratic Approximations

@ Recall gradient descent is based on quadratic approximation,

X

k1 — argmin {f(xk) + (F/(xF), x = x¥) + QLHX - XkH2} :
K

xeIR9Y

@ We've discussed a variety of variations on this:

@ You

Add extrapolation: momentum/heavy-ball/Nesterov.
Replace ||x — x¥||? with [|x — x¥||2,;: Newton.

Replace f/(x¥) with gk € 9f(x¥): subgradient.
Replace f'(x*) with f/(x¥): stochastic gradient.
Replace f'(x¥) with memory of old gradients: SAG.
Replace IRY with convex set C: projected gradient.
Add extra non-smooth term g(x): proximal-gradient.
Adding more terms and a A update: ADMM.

Use compact C and remove ||x — x*||? term: Frank-Wolfe.
Replace f'(x*) with 75-’(X")ej: coordinate descent.
can mix/match: proximal quasi-Newton methods,

block-coordinate Frank-Wolfe, proximal-SVRG, etc.
@ Today: algorithms based on non-quadratic approximations.
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Non-Quadratic Approach 1: Mirror Descent

@ Modern view of mirror descent iteration:

1
xk+1 = argmin {f(xk) + (F/(x%), x — x*) + D(x,xk)} :
x€RY Ok

where D(x,x¥) is a Bregman divergence (BD).

o Informally: BDs are functions that act like ||x — x*||2.
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Non-Quadratic Approach 1: Mirror Descent

@ Modern view of mirror descent iteration:

1
k1 — argmin {f(xk) + (F/(x%), x — x*) + D(x,xk)} :
Ok

xelRY

where D(x,x¥) is a Bregman divergence (BD).
o Informally: BDs are functions that act like ||x — x*||2.

@ Formally, given a strictly-convex function h, BD is defined by
Dh(y,X) = h(y) - h(X) - <h/(X)7y - X>,

difference between h(y) and first-order Taylor expansion at x.
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Non-Quadratic Approach 1: Mirror Descent

@ Modern view of mirror descent iteration:

1
xk+1 = argmin {f(xk) + (F/(x%), x — x*) + D(x,xk)} :
x€R? Ok

where D(x,x¥) is a Bregman divergence (BD).
o Informally: BDs are functions that act like ||x — x*||2.

@ Formally, given a strictly-convex function h, BD is defined by
Dh(y,X) = h(y) - h(X) - <h/(X)7y - X>,

difference between h(y) and first-order Taylor expansion at x.
@ Properties:
o Non-negative: Dy(y,x) > 0.
o Strictly convex in y (though not necessarily in x).
o BD of convex conjugate: Dy« (f'(y), f'(x)) = Dp(x, y).
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Examples of Bregman Divergences

@ Deifnition of Bregman divergence for strongly-convex h,

Di(y,x) = h(y) = h(x) = (H'(x),y — x).

o For h(x) = ||x||2, we get Dp(y,x) = |ly — x]|?:
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Examples of Bregman Divergences

@ Deifnition of Bregman divergence for strongly-convex h,
Dr(y,x) = h(y) — h(x) = (K (x),y — x).
o For h(x) = ||x||, we get Dp(y,x) = ||y — x|

Dy(y,x) = llyll* = lIx]I* = (2x,y = x)
= Iyl = IxII? = (2x,y = x) £ 2y, y = x)
= IyllP + Ixl? =2y Tx = |ly — x|

o For h(x) = ||x||%, we get Du(y,x) = |ly — x||3.
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Examples of Bregman Divergences

@ Deifnition of Bregman divergence for strongly-convex h,

Di(y,x) = h(y) = h(x) = (W (x),y — x).
o If domain is probabilities and h is entropy, h(x) = >, x; log x;,
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Examples of Bregman Divergences

@ Deifnition of Bregman divergence for strongly-convex h,

Di(y,x) = h(y) = h(x) = (W (x),y — x).
o If domain is probabilities and h is entropy, h(x) = >, x; log x;,

Zy, log y; — Z x; log x; — 2(1 + log(x;))(yi — xi)
_Zy,logy, Zx,logx, Zy,—i—le Z Yi—Xi
= Zy, log y; — Zx, log x; — Z( — x;) log x;. |
= Zy, log y;— Zx, log x; — Zy, log x; +Zx, log x;.
= ZYi log i — ny log x; = ny |og;’_ £ Dy (y![x)-

which is the Kullback-Leibler divergence.



Entropic Descent and Exponentiated Gradient

o Consider optimizing over the probability simplex

argmin  f(x).
x>0,3"; xi=1

e Consider using mirror descent with the KL divergence,

1
xk1 = argmin {f(xk) + (F/(x9),x = xX) + DKL(X”Xk)} :
x€RY ik
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Entropic Descent and Exponentiated Gradient

o Consider optimizing over the probability simplex

argmin  f(x).
x>0,3"; xi=1

Consider using mirror descent with the KL divergence,

1
xk1 = argmin {f(xk) + (F/(x9),x = xX) + DKL(X”Xk)} :
x€RY ik

The update for each variable j is given by

ke XJ.k exp(—ozklj-’(xk)) '
D SR peo A

If xO satisfies constraints, all iterations satisfy constraints.

Called entropic descent or exponentiated gradient.
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Convergence Rate of Exponentiated Gradient

@ Regular projected sub-gradient has a rate of O(1/vk).

e Constant has no dependence on n.
e Constants depends on Lipschitz constant in ¢-norm, L.
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Convergence Rate of Exponentiated Gradient

@ Regular projected sub-gradient has a rate of O(1/vk).

e Constant has no dependence on n.

o Constants depends on Lipschitz constant in ¢5-norm, L.
o Projected sub-gradient mirror descent also has O(1/v/k).

o Constant has a log(n) dependence.
o Constant depends on Lipschitz in #;-norm, L;.
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Convergence Rate of Exponentiated Gradient

@ Regular projected sub-gradient has a rate of O(1/vk).

e Constant has no dependence on n.

o Constants depends on Lipschitz constant in ¢5-norm, L.
o Projected sub-gradient mirror descent also has O(1/v/k).

o Constant has a log(n) dependence.
o Constant depends on Lipschitz in #;-norm, L;.

@ We have Ly < Lp < +/nly:
o If left is tight, mirror descent is worse by /log(n).
o In right is tight, mirror descent improves /n to +/log(n)/n.
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Convergence Rate of Exponentiated Gradient

@ Strongly-convex: rate improves to O(log(t)/t).
@ Stochastic mirror descent: rates stay the same.

@ Smooth case: accelerated O(1/t?) variants.
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Convergence Rate of Exponentiated Gradient

Strongly-convex: rate improves to O(log(t)/t).
Stochastic mirror descent: rates stay the same.

Smooth case: accelerated O(1/t?) variants.
Learning theory [Kivinen & Warmuth, 1997]:
o Exponentiated gradient is better if few relevant variables.

Pre-SAG: For log-linear models, dual block exponentiated
gradient has linear rate [Collins et al., 2007].
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Non-Quadratic Approach 2: Multi-Level Methods

@ We want to minimize a smooth function F,

argmin F(x),
x€RY

and it is very expensive to evaluate F.

@ But we quickly optimize a related cheap function f.
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Non-Quadratic Approach 2: Multi-Level Methods

@ We want to minimize a smooth function F,

argmin F(x),
x€RY

and it is very expensive to evaluate F.

@ But we quickly optimize a related cheap function f.

@ Examples:

Total-variation on a big image (F) or smaller version (f).
Fitting CRF with variational (F) or pseudolikelihood (7).
Fitting model on full data (F) or small sub-samples (f).

Differential equation on fine grid (F) vs. coarse grid (f).

@ Could have more than 2 levels, but we'll focus on 2.

Mark Schmidt Mirror Descent and Multi-Level Optimization



Multi-Level Optimization

o Multi-level optimization methods repeat three steps:
@ Cheap minimization of modified f (can start with vy = 0).

y* = argmin f(x) + (v, x).

x€IR4
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Multi-Level Optimization

o Multi-level optimization methods repeat three steps:
@ Cheap minimization of modified f (can start with vy = 0).

y* = argmin f(x) + (v, x).

x€IR4

@ Use y* to give descent direction,

Xk+1 _ Xk _ Ozk(Xk _yk).
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Multi-Level Optimization

o Multi-level optimization methods repeat three steps:

@ Cheap minimization of modified f (can start with vy = 0).
y* = argmin f(x) + (v, x).
x€R?

@ Use y* to give descent direction,

Xk+1 _ Xk _ Ozk(Xk _yk)’

© Set v, to satisfy first-order coherence:

Lf
Vi1 = TFI(Xk+1) - f/(XkH)'

F
@ Above we assume that F and f have same parameters:

e Add projection if defined on different variables.
o Called ‘restriction’ and ‘prolongation’.

@ Linear rate depending on various factors [Parpas et al., 2014].
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First-Order Coherence Condition

@ Consider the first iteration of gradient descent on f,

L
argmin £(x°) + (F(x°), x — x°) + = ||x — x°||2.
x€RY 2

@ Makes progress on f, but no relation to F.
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First-Order Coherence Condition

@ Consider the first iteration of gradient descent on f,

L
argmin £(x°) + (F(x°), x — x°) + = ||x — x°||2.
x€RY 2

@ Makes progress on f, but no relation to F.
@ Now consider the modified function

h(x) = £(x) + (vi, x) = F(x) + <Z_F’(X°) — f'(x%),x)

K (x) = f'(x) + Z_;f:F/(XO) — f'(xo).
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First-Order Coherence Condition

@ Consider the first iteration of gradient descent on f,
L
argmin £(x°) + (F(x°), x — x°) + = ||x — x°||2.
x€R? 2

@ Makes progress on f, but no relation to F.
@ Now consider the modified function

h(x) = £(x) + (vi, x) = F(x) + <ZF’(X°) — f'(x%),x)

L
H(x) = /() + -F'(x%) = F/(x°).
F
@ By playing with argmins, first iteration on h gives

L
argmin F(x%) + (F/(x°), x — x°) + =2 ||x — x°|I?,
x€R9 2

which is gradient descent on F.
@ But could make progress if F and f.
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Non-Quadratic Approaches 3+4

Mairal [2013,2014] considers general surrogate optimization:

Xt = argmin {f(y)},
xeC
Cheap function f upper bounds expensive function F.
Function values and gradients of f and F agree at x!.
Function ' — F’ is Lipschitz-continuous.

Obtains O(1/k) and linear rates depending on f — F.
Hennig & Kiefel [2013] propose non-parametric quasi-Newton:

® 6 6 o o

o View quasi-Newton methods as MAP estimators.
o New method incorporates all previous gradients.
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@ Mirror descent considers other Bregman divergences.

e Advantages for optimization over simplex.
o Other interesting divergences/problems?

e Multi-level /surrogate consider cheap f and expensive F.

o Great for problems that have multiple resolutions.
e Useful for ML methods like graphical models?

@ Room for improvement over classic quadratic approximations:
e Non-parametric quasi-Newton.
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