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Quadratic Approximations

Recall gradient descent is based on quadratic approximation,

xk+1 = argmin
x∈IRd

{
f (xk) + 〈f ′(xk), x − xk〉+

1

2αk
‖x − xk‖2

}
.

We’ve discussed a variety of variations on this:
Add extrapolation: momentum/heavy-ball/Nesterov.
Replace ‖x − xk‖2 with ‖x − xk‖2H : Newton.
Replace f ′(xk) with gk ∈ ∂f (xk): subgradient.
Replace f ′(xk) with f ′i (xk): stochastic gradient.
Replace f ′(xk) with memory of old gradients: SAG.
Replace IRd with convex set C: projected gradient.
Add extra non-smooth term g(x): proximal-gradient.
Adding more terms and a λ update: ADMM.
Use compact C and remove ‖x − xk‖2 term: Frank-Wolfe.
Replace f ′(xk) with f ′j (xk)ej : coordinate descent.

You can mix/match: proximal quasi-Newton methods,
block-coordinate Frank-Wolfe, proximal-SVRG, etc.

Today: algorithms based on non-quadratic approximations.
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Non-Quadratic Approach 1: Mirror Descent

Modern view of mirror descent iteration:

xk+1 = argmin
x∈IRd

{
f (xk) + 〈f ′(xk), x − xk〉+

1

αk
D(x , xk)

}
,

where D(x , xk) is a Bregman divergence (BD).

Informally: BDs are functions that act like ‖x − xk‖2.

Formally, given a strictly-convex function h, BD is defined by

Dh(y , x) = h(y)− h(x)− 〈h′(x), y − x〉,

difference between h(y) and first-order Taylor expansion at x .

Properties:

Non-negative: Dh(y , x) ≥ 0.
Strictly convex in y (though not necessarily in x).
BD of convex conjugate: Dh∗(f ′(y), f ′(x)) = Dh(x , y).
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Examples of Bregman Divergences

Deifnition of Bregman divergence for strongly-convex h,

Dh(y , x) = h(y)− h(x)− 〈h′(x), y − x〉.

For h(x) = ‖x‖2, we get Dh(y , x) = ‖y − x‖2:

Dh(y , x) = ‖y‖2 − ‖x‖2 − 〈2x , y − x〉
= ‖y‖2 − ‖x‖2 − 〈2x , y − x〉 ± 〈2y , y − x〉
= ‖y‖2 + ‖x‖2 − 2yT x = ‖y − x‖2.

For h(x) = ‖x‖2H , we get Dh(y , x) = ‖y − x‖2H .
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Examples of Bregman Divergences

Deifnition of Bregman divergence for strongly-convex h,

Dh(y , x) = h(y)− h(x)− 〈h′(x), y − x〉.

If domain is probabilities and h is entropy, h(x) =
∑

i xi log xi ,

Dh(y , x) =
∑
i

yi log yi −
∑
i

xi log xi −
∑
i

(1 + log(xi ))(yi − xi )

=
∑
i

yi log yi −
∑
i

xi log xi −
∑
i

yi +
∑
i

xi −
∑
i

(yi − xi ) log xi .

=
∑
i

yi log yi −
∑
i

xi log xi −
∑
i

(yi − xi ) log xi .

=
∑
i

yi log yi−
∑
i

xi log xi −
∑
i

yi log xi +
∑
i

xi log xi .

=
∑
i

yi log yi −
∑
i

yi log xi =
∑
i

yi log
yi
xi

, DKL(y ||x).

which is the Kullback-Leibler divergence.
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Entropic Descent and Exponentiated Gradient

Consider optimizing over the probability simplex

argmin
x≥0,

∑
i xi=1

f (x).

Consider using mirror descent with the KL divergence,

xk+1 = argmin
x∈IRd

{
f (xk) + 〈f ′(xk), x − xk〉+

1

αk
DKL(x ||xk)

}
.

The update for each variable j is given by

xk+1
j =

xkj exp(−αk f
′
j (xk))∑

j ′ x
k
j ′ exp(−αk f

′
j ′(x

k)
.

If x0 satisfies constraints, all iterations satisfy constraints.

Called entropic descent or exponentiated gradient.
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Convergence Rate of Exponentiated Gradient

Regular projected sub-gradient has a rate of O(1/
√
k).

Constant has no dependence on n.
Constants depends on Lipschitz constant in `2-norm, L2.

Projected sub-gradient mirror descent also has O(1/
√
k).

Constant has a log(n) dependence.
Constant depends on Lipschitz in `1-norm, L1.

We have L1 ≤ L2 ≤
√
nL1:

If left is tight, mirror descent is worse by
√

log(n).

In right is tight, mirror descent improves
√
n to

√
log(n)/n.
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Convergence Rate of Exponentiated Gradient

Strongly-convex: rate improves to O(log(t)/t).

Stochastic mirror descent: rates stay the same.

Smooth case: accelerated O(1/t2) variants.

Learning theory [Kivinen & Warmuth, 1997]:

Exponentiated gradient is better if few relevant variables.

Pre-SAG: For log-linear models, dual block exponentiated
gradient has linear rate [Collins et al., 2007].
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Non-Quadratic Approach 2: Multi-Level Methods

We want to minimize a smooth function F ,

argmin
x∈IRd

F (x),

and it is very expensive to evaluate F .

But we quickly optimize a related cheap function f .

Examples:

Total-variation on a big image (F ) or smaller version (f ).
Fitting CRF with variational (F ) or pseudolikelihood (f ).
Fitting model on full data (F ) or small sub-samples (f ).
Differential equation on fine grid (F ) vs. coarse grid (f ).

Could have more than 2 levels, but we’ll focus on 2.
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Multi-Level Optimization

Multi-level optimization methods repeat three steps:
1 Cheap minimization of modified f (can start with v0 = 0).

yk = argmin
x∈IRd

f (x) + 〈vk , x〉.

2 Use yk to give descent direction,

xk+1 = xk − αk(xk − yk).

3 Set vk to satisfy first-order coherence:

vk+1 =
Lf
LF

F ′(xk+1)− f ′(xk+1).

Above we assume that F and f have same parameters:

Add projection if defined on different variables.
Called ‘restriction’ and ‘prolongation’.

Linear rate depending on various factors [Parpas et al., 2014].
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First-Order Coherence Condition

Consider the first iteration of gradient descent on f ,

argmin
x∈IRd

f (x0) + 〈f ′(x0), x − x0〉+
Lf
2
‖x − x0‖2.

Makes progress on f , but no relation to F .

Now consider the modified function

h(x) = f (x) + 〈vk , x〉 = f (x) + 〈 Lf
LF

F ′(x0)− f ′(x0), x〉

h′(x) = f ′(x) +
Lf
LF

F ′(x0)− f ′(x0).

By playing with argmins, first iteration on h gives

argmin
x∈IRd

F (x0) + 〈F ′(x0), x − x0〉+
LF
2
‖x − x0‖2,

which is gradient descent on F .

But could make progress if F and f .
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Non-Quadratic Approaches 3+4

Mairal [2013,2014] considers general surrogate optimization:

x t+1 = argmin
x∈C

{f (y)} ,

Cheap function f upper bounds expensive function F .

Function values and gradients of f and F agree at x t .

Function f ′ − F ′ is Lipschitz-continuous.

Obtains O(1/k) and linear rates depending on f − F .

Hennig & Kiefel [2013] propose non-parametric quasi-Newton:

View quasi-Newton methods as MAP estimators.
New method incorporates all previous gradients.
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Summary

Mirror descent considers other Bregman divergences.

Advantages for optimization over simplex.
Other interesting divergences/problems?

Multi-level/surrogate consider cheap f and expensive F .

Great for problems that have multiple resolutions.
Useful for ML methods like graphical models?

Room for improvement over classic quadratic approximations:

Non-parametric quasi-Newton.
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