Frank-Wolfe Algorithm & Alternating Direction Method of Multipliers

Ives Macêdo

ijamj@cs.ubc.ca

October 27, 2015

Where were we?

Previous episode...

Proximal-gradient methods

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad f(x) + \varphi(x)$$

- $f: \mathcal{X} \to \mathbb{R}$ convex with Lipschitz-continuous gradient
- $\varphi : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ convex and *simple* (i.e., proximable)

$$\operatorname{prox}_{\alpha\varphi} : \mathcal{X} \to \mathcal{X} \quad (\forall \alpha > 0)$$
$$\operatorname{prox}_{\alpha\varphi}(x) := \operatorname*{arg\,min}_{\hat{x}\in\mathcal{X}} \left\{ \frac{\alpha\varphi(\hat{x}) + \frac{1}{2} \|\hat{x} - x\|_2^2}{\|\hat{x} - x\|_2^2} \right\}$$

$$x^{k+1} := \operatorname{prox}_{\boldsymbol{\alpha_k}\varphi} \left(x^k - \boldsymbol{\alpha_k} \nabla f(x^k) \right)$$

Proximal-gradient methods Good news

- $\blacktriangleright \ \alpha_k \equiv \alpha \in (0, 2/L) \Rightarrow f(x^k) + \varphi(x^k) \min\left\{f + \varphi\right\} \le O(1/k)$
- Acceleration gives $O(1/k^2)$
- Generalize projected gradient methods, where

$$\varphi(x) = \delta_{\mathcal{C}}(x) := \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ +\infty & \text{if } x \notin \mathcal{C} \end{cases}$$

Proximal-gradient methods Bad news

► Some sets C can be tough to project onto but you can minimize linear functions in them

• Dealing with $\varphi(x) = \phi(Ax)$ ain't easy even when ϕ is *simple*

Proximal-gradient methods Bad news

► Some sets C can be tough to project onto but you can minimize linear functions in them

Frank-Wolfe Algorithm/Conditional Gradient Method

▶ Dealing with $\varphi(x) = \phi(Ax)$ ain't easy even when ϕ is *simple*

Proximal-gradient methods Bad news

► Some sets C can be tough to project onto but you can minimize linear functions in them

Frank-Wolfe Algorithm/Conditional Gradient Method

▶ Dealing with $\varphi(x) = \phi(Ax)$ ain't easy even when ϕ is *simple*

Alternating Direction Method of Multipliers (ADMM)

$$\begin{pmatrix} ? & ? & 2 & ? \\ 1 & ? & ? & 3 \\ 1 & 2 & 2 & 3 \\ ? & 6 & 6 & 9 \\ 3 & ? & ? & 9 \\ 1 & ? & 2 & ? \\ ? & ? & 6 & 9 \end{pmatrix}$$

$$\operatorname{rank} \begin{pmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \\ 1 & 2 & 2 & 3 \\ 0 & 6 & 6 & 9 \\ 3 & 0 & 0 & 9 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 6 & 9 \end{pmatrix} = 4$$

$$\operatorname{rank} \begin{pmatrix} 1 & 2 & 2 & 3 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 2 & 3 \\ 3 & 6 & 6 & 9 \\ 3 & 6 & 6 & 9 \\ 1 & 2 & 2 & 3 \\ 3 & 6 & 6 & 9 \end{pmatrix} = 1$$

Matrix completion with nuclear-norm lasso

$$\underset{X \in \mathbb{R}^{n_1 \times n_2}}{\text{minimize}} \quad \frac{1}{2} \sum_{k=1}^m (X_{i_k, j_k} - b_k)^2 \quad \text{subject to} \quad \|\sigma(X)\|_1 \le \tau$$

Matrix completion with nuclear-norm lasso

Matrix completion with nuclear-norm lasso

$$\underset{X \in \mathbb{R}^{n_1 \times n_2}}{\text{minimize}} \quad \frac{1}{2} \sum_{k=1}^m (X_{i_k, j_k} - b_k)^2 \quad \text{subject to} \quad \|X\|_1 \le \tau$$

•
$$||X||_1 = ||\sigma(X)||_1 = \sum_{i=1}^{\min\{n_1, n_2\}} \sigma_i(X)$$

- ▶ Projection onto $\{X \mid ||X||_1 \le \tau\}$ potentially requires full SVD
- Linear minimization requires only one SVD triplet!

- $\blacktriangleright \ f: \mathbb{R}^n \to \mathbb{R}$ is convex and continuously differentiable
- $C \subset \mathbb{R}^n$ is convex and compact (i.e., closed and bounded)
 - we can minimize linear functions over \mathcal{C} , i.e., $\forall c \in \mathbb{R}^n$

find
$$\hat{x} \in \operatorname*{arg\,min}_{x \in \mathcal{C}} \langle c, x \rangle$$

Frank and Wolfe (1956)

$$x^{0} \in \mathcal{C}$$
$$\hat{x}^{k+1} \in \underset{x \in \mathcal{C}}{\operatorname{arg\,min}} \left\{ f(x^{k}) + \left\langle \nabla f(x^{k}), x - x^{k} \right\rangle \right\}$$
$$x^{k+1} = (1 - \alpha_{k})x^{k} + \alpha_{k}\hat{x}^{k+1}, \quad \alpha_{k} := \frac{2}{k+2}$$

Frank and Wolfe (1956)

$$x^{0} \in \mathcal{C}$$
$$\hat{x}^{k+1} \in \operatorname*{arg\,min}_{x \in \mathcal{C}} \left\{ f(x^{k}) + \left\langle \nabla f(x^{k}), x - x^{k} \right\rangle \right\}$$
$$x^{k+1} = (1 - \alpha_{k}) x^{k} + \alpha_{k} \hat{x}^{k+1}, \quad \alpha_{k} := \frac{2}{k+2}$$

Approximation similar to projected gradient, but no quadratic term!

Curvature constant

$$\ell_{f}(y;x) := f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$
$$C_{f} := \max_{\substack{x, \hat{x} \in \mathcal{C} \\ \alpha \in [0,1] \\ y = (1-\alpha)x + \alpha \hat{x}}} \frac{2}{\alpha^{2}} \ell_{f}(y;x)$$

Curvature constant (example)

$$f(x) = \frac{1}{2} ||x||_2^2$$
$$\ell_f(y; x) = \frac{1}{2} ||y - x||_2^2$$
$$C_f = \max_{x, \hat{x} \in \mathcal{C}} ||\hat{x} - x||_2^2 = (\operatorname{diam} \mathcal{C})^2$$

Curvature constant (example)

$$f(x) = \frac{1}{2} ||x||_2^2$$
$$\ell_f(y;x) = \frac{1}{2} ||y - x||_2^2$$
$$C_f = \max_{x, \hat{x} \in \mathcal{C}} ||\hat{x} - x||_2^2 = (\operatorname{diam} \mathcal{C})^2$$

If ∇f is *L*-Lipschitz, then $C_f \leq L(\operatorname{diam} \mathcal{C})^2$

Approximate subproblem minimizers

$$\hat{x}^{k+1} \in \left\{ \hat{x} \in \mathcal{C} \left| \ell_f(\hat{x}; x^k) \le \min_{x \in \mathcal{C}} \ell_f(x; x^k) + \frac{1}{2} \delta \alpha_k C_f \right. \right\}$$

Exact line-search

$$\alpha_k \in \underset{\alpha \in [0,1]}{\operatorname{arg\,min}} \int \left((1-\alpha) x^k + \alpha \hat{x}^{k+1} \right)$$

Fully-corrective reoptimization

$$x^{k+1} \in rgmin_{x \in \operatorname{conv}\{x^0, \hat{x}^1, \dots, \hat{x}^{k+1}\}} f(x)$$

Primal-convergence

Theorem (Jaggi, 2013)

$$f(x^k) - \inf_{\mathcal{C}} f \le \frac{2C_f}{k+2}(1+\delta)$$

Lower bound on primal convergence

Theorem (Canon and Cullum, 1968)

There are instances with strongly convex objectives for which the original FWA generates sequences with the following behavior: for all $C, \epsilon > 0$ there are infinitely many k such that

$$f(x^k) - \inf_{\mathcal{C}} f \ge \frac{C}{k^{1+\epsilon}}$$

Faster variants

- Linear convergence can be obtained in certain cases if "away/drop steps" are used; see (GuéLat and Marcotte, 1986) and (Lacoste-Julien and Jaggi, 2014)
- ► For smooth f and strongly convex C, a simple variant has complexity O(1/k²) (Garber and Hazan, 2015)

Alternating Direction Method of Multipliers

$$\underset{f}{\text{minimize}} \quad \frac{1}{2} \int (f - f_{\eta})^2 + \lambda \int \|\nabla f\|_2$$

$$\underset{x}{\text{minimize}} \quad \frac{1}{2} \|x - x_{\eta}\|_{2}^{2} + \lambda \|Dx\|_{1}$$

minimize
$$\frac{1}{2} \|x - x_{\eta}\|_2^2 + \lambda \|y\|_1$$
 subject to $Dx - y = 0$

Equality-constrained optimization

First-order optimality conditions

$$\underset{x}{\text{minimize}} \quad f(x) \quad \text{subject to} \quad h(x) = 0$$

Necessary for \bar{x} to be a minimizer:

$$\nabla f(\bar{x}) + \nabla h(\bar{x})\bar{z} = 0$$
$$h(\bar{x}) = 0$$

Equality-constrained optimization Quadratic penalization

$$x^{k+1} \in \operatorname*{arg\,min}_{x} \left\{ f(x) + \frac{\rho_k}{2} \left\| h(x) \right\|_2^2 \right\}$$

$$\nabla f(x^{k+1}) + \nabla h(x^{k+1})[\rho_k h(x^{k+1})] = 0$$

• Need
$$h(x^{k+1}) \to 0$$
 and $\rho_k \to +\infty$ for $\rho_k h(x^{k+1}) \to \bar{z} \neq 0$

Equality-constrained optimization

Lagrangian minimization

$$x^{k+1} \in \underset{x}{\arg\min} \left\{ f(x) + \left\langle z^k, h(x) \right\rangle \right\}$$
$$z^{k+1} = z^k + \alpha_k h(x^{k+1})$$

$$\nabla f(x^{k+1}) + \nabla h(x^{k+1})z^k = 0$$

- ► (Super)gradient *ascent* on concave dual
- ► Stability issues when argmin has multiple points at solution

Equality-constrained optimization

Method of Multipliers/Augmented Lagrangian

 \blacktriangleright MM \approx Lagrangian Minimization + Quadratic Penalization

$$x^{k+1} \in \underset{x}{\arg\min} \left\{ f(x) + \left\langle z^{k}, h(x) \right\rangle + \frac{\rho_{k}}{2} \|h(x)\|_{2}^{2} \right\}$$
$$z^{k+1} = z^{k} + \rho_{k} h(x^{k+1})$$

$$\nabla f(x^{k+1}) + \nabla h(x^{k+1})z^{k+1} = 0$$

- Will work once ρ_k sufficiently large (no need for $\rho_k \to +\infty$)
- Computing x^{k+1} can be tough

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad f(x) + \lambda \phi(Ax)$$

- $\blacktriangleright \ A: \mathcal{X} \to \mathcal{Y} \text{ linear}$
- $\phi: \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ convex and proximable
- $f: \mathcal{X} \to \mathbb{R}$ such that one can solve:

$$\underset{x \in \mathcal{X}}{\text{minimize}} \quad f(x) + \frac{1}{2} \|b - Ax\|_{2}^{2}$$

Method of Multipliers

$$\underset{x,y}{\text{minimize}} \quad f(x) + \lambda \phi(y) \quad \text{subject to} \quad Ax - y = 0$$

$$(x^{k+1}, y^{k+1}) \in \underset{x,y}{\operatorname{arg\,min}} \left\{ f(x) + \lambda \phi(y) + \frac{\rho_k}{2} \left\| Ax - y + \frac{z^k}{\rho_k} \right\|_2^2 \right\}$$
$$z^{k+1} = z^k + \rho_k (Ax^{k+1} - y^{k+1})$$

- \blacktriangleright Still tricky joint minimization over x and y
- Alternate!

Alternating Direction Method of Multipliers

$$\begin{aligned} x^{k+1} &\in \operatorname*{arg\,min}_{x} \left\{ f(x) + \frac{\rho_k}{2} \left\| Ax - y^k + \frac{z^k}{\rho_k} \right\|_2^2 \right\} \\ y^{k+1} &= \operatorname*{arg\,min}_{y} \left\{ \lambda \phi(y) + \frac{\rho_k}{2} \left\| Ax^{k+1} - y + \frac{z^k}{\rho_k} \right\|_2^2 \right\} \\ &= \operatorname{prox}_{\rho_k^{-1} \lambda \phi} \left[Ax^{k+1} + \frac{z^k}{\rho_k} \right] \\ z^{k+1} &= z^k + \rho_k (Ax^{k+1} - y^{k+1}) \end{aligned}$$

Alternating Direction Method of multipliers

• Simpler iterations when $\rho_k \equiv \rho$ (defining $\hat{z}^k := z^k / \rho$)

$$x^{k+1} \in \underset{x}{\arg\min} \left\{ f(x) + \frac{\rho}{2} \left\| Ax - y^k + \hat{z}^k \right\|_2^2 \right\}$$
$$y^{k+1} = \underset{\rho^{-1}\lambda\phi}{\max} \left[Ax^{k+1} + \hat{z}^k \right]$$
$$\hat{z}^{k+1} = \hat{z}^k + (Ax^{k+1} - y^{k+1})$$

Total-variation denoising

Total-variation denoising

Total-variation denoising

Convergence

- Function values decrease as O(1/k) (He and Yuan, 2012)
- ► Linear convergence if f or φ is strongly convex and under certain conditions on A (Deng and Yin, 2012)

Other problems suitable for ADMM In case I haven't bored you out of your mind...

What if f is only proximable?

$$\underset{x}{\text{minimize}} \quad f(x) + \lambda \phi(Ax)$$

$$\begin{array}{ll} \underset{x_1, x_2, y}{\text{minimize}} & f(x_1) + \lambda \phi(y) \\ \text{subject to} \\ & Ax_2 - y = 0 \\ & x_1 - x_2 = 0 \end{array}$$

What if f is only proximable?

$$\begin{array}{ll} \underset{x_1, x_2, y}{\text{minimize}} & f(x_1) + \lambda \phi(y) \\ \text{subject to} \\ & Ax_2 - y = 0 \\ & x_1 - x_2 = 0 \end{array}$$

$$\begin{split} x_1^{k+1} &= \operatorname{prox}_{\rho^{-1}f} \left[x_2^k - \hat{z}_2^k \right] \\ y^{k+1} &= \operatorname{prox}_{\rho^{-1}\lambda\phi} \left[A x_2^k + \hat{z}_1^k \right] \\ x_2^{k+1} &= (I + A^* A)^{-1} (x_1^{k+1} + \hat{z}_2^k + A^* (y^{k+1} - \hat{z}_1^k)) \\ \hat{z}_1^{k+1} &= \hat{z}_1^k + (A x_2^{k+1} - y^{k+1}) \\ \hat{z}_2^{k+1} &= \hat{z}_2^k + (x_1^{k+1} - x_2^{k+1}) \end{split}$$

Sum of proximable functions

Distributed consensus

Regularized sum of proximable functions

Regularized sum of proximable functions

Regularized sum of proximable functions

$$\begin{array}{ll} \underset{x,x_{1},...,x_{m}}{\text{minimize}} & \sum_{i=1}^{m} f_{i}(x_{i}) + \lambda \varphi(x) & \text{subject to} & x_{i} - x = 0, \ \forall i \\ \\ & x_{i}^{k+1} = \operatorname{prox}_{\rho^{-1}f_{i}}[x^{k} - \hat{z}_{i}^{k}] \\ & x^{k+1} = \operatorname{prox}_{(m\rho)^{-1}\lambda\varphi} \left[\frac{1}{m} \sum_{i=1}^{m} (x_{i}^{k+1} + \hat{z}_{i}^{k}) \right] \\ & \hat{z}_{i}^{k+1} = \hat{z}_{i}^{k} + (x_{i}^{k+1} - x^{k+1}) \end{array}$$

Frank-Wolfe Algorithm & Alternating Direction Method of Multipliers

Ives Macêdo

ijamj@cs.ubc.ca

October 27, 2015