
Frank-Wolfe Algorithm
&

Alternating Direction Method of Multipliers

Ives Macêdo
ijamj@cs.ubc.ca

October 27, 2015



Where were we?



Previous episode. . .
Proximal-gradient methods

minimize
x∈X

f(x) + ϕ(x)

I f : X → R convex with Lipschitz-continuous gradient

I ϕ : X → R ∪ {+∞} convex and simple (i.e., proximable)

proxαϕ : X → X (∀α > 0)

proxαϕ(x) := arg min
x̂∈X

{
αϕ(x̂) +

1

2
‖x̂− x‖22

}

xk+1 := proxαkϕ

(
xk − αk∇f(xk)

)



Proximal-gradient methods
Good news

I αk ≡ α ∈ (0, 2/L)⇒ f(xk) +ϕ(xk)−min {f + ϕ} ≤ O(1/k)

I Acceleration gives O(1/k2)

I Generalize projected gradient methods, where

ϕ(x) = δC(x) :=

{
0 if x ∈ C
+∞ if x /∈ C



Proximal-gradient methods
Bad news

I Some sets C can be tough to project onto but you can
minimize linear functions in them

Frank-Wolfe Algorithm/Conditional Gradient Method

I Dealing with ϕ(x) = φ(Ax) ain’t easy even when φ is simple

Alternating Direction Method of Multipliers (ADMM)



Proximal-gradient methods
Bad news

I Some sets C can be tough to project onto but you can
minimize linear functions in them

Frank-Wolfe Algorithm/Conditional Gradient Method

I Dealing with ϕ(x) = φ(Ax) ain’t easy even when φ is simple

Alternating Direction Method of Multipliers (ADMM)



Proximal-gradient methods
Bad news

I Some sets C can be tough to project onto but you can
minimize linear functions in them

Frank-Wolfe Algorithm/Conditional Gradient Method

I Dealing with ϕ(x) = φ(Ax) ain’t easy even when φ is simple

Alternating Direction Method of Multipliers (ADMM)



Frank-Wolfe Algorithm



A motivating problem
Matrix completion



? ? 2 ?

1 ? ? 3

1 2 2 3

? 6 6 9

3 ? ? 9

1 ? 2 ?

? ? 6 9





A motivating problem
Matrix completion



0 0 2 0

1 0 0 3

1 2 2 3

0 6 6 9

3 0 0 9

1 0 2 0

0 0 6 9





A motivating problem
Matrix completion

rank



0 0 2 0

1 0 0 3

1 2 2 3

0 6 6 9

3 0 0 9

1 0 2 0

0 0 6 9


= 4



A motivating problem
Matrix completion

rank



1 2 2 3

1 2 2 3

1 2 2 3

3 6 6 9

3 6 6 9

1 2 2 3

3 6 6 9


= 1



A motivating problem
Matrix completion with nuclear-norm lasso

minimize
X∈Rn1×n2

1

2

m∑
k=1

(Xik,jk − bk)
2 subject to ‖σ(X)‖1 ≤ τ



A motivating problem
Matrix completion with nuclear-norm lasso

minimize
X∈Rn1×n2

1

2

m∑
k=1

(Xik,jk − bk)
2 subject to ‖σ(X)‖1 ≤ τ



A motivating problem
Matrix completion with nuclear-norm lasso

minimize
X∈Rn1×n2

1

2

m∑
k=1

(Xik,jk − bk)
2 subject to ‖X‖1 ≤ τ

I ‖X‖1 = ‖σ(X)‖1 =
min{n1,n2}∑

i=1
σi(X)

I Projection onto {X | ‖X‖1 ≤ τ} potentially requires full SVD

I Linear minimization requires only one SVD triplet!



Model problem

minimize
x∈C

f(x)

I f : Rn → R is convex and continuously differentiable
I C ⊂ Rn is convex and compact (i.e., closed and bounded)

I we can minimize linear functions over C, i.e., ∀c ∈ Rn

find x̂ ∈ arg min
x∈C

〈c, x〉



Frank-Wolfe algorithm
Frank and Wolfe (1956)

x0 ∈ C

x̂k+1 ∈ arg min
x∈C

{
f(xk) +

〈
∇f(xk), x− xk

〉}

xk+1 = (1− αk)xk+αkx̂k+1, αk :=
2

k + 2

Approximation similar to projected gradient, but no quadratic term!



Frank-Wolfe algorithm
Frank and Wolfe (1956)

x0 ∈ C

x̂k+1 ∈ arg min
x∈C

{
f(xk) +

〈
∇f(xk), x− xk

〉}

xk+1 = (1− αk)xk+αkx̂k+1, αk :=
2

k + 2

Approximation similar to projected gradient, but no quadratic term!



Frank-Wolfe algorithm
Visualizing the iterates



Frank-Wolfe algorithm
Visualizing the iterates



Frank-Wolfe algorithm
Visualizing the iterates



Frank-Wolfe algorithm
Visualizing the iterates



Frank-Wolfe algorithm
Curvature constant

`f (y;x) := f(y)− f(x)− 〈∇f(x), y − x〉

Cf := max
x,x̂∈C
α∈[0,1]

y=(1−α)x+αx̂

2

α2
`f (y;x)



Frank-Wolfe algorithm
Curvature constant (example)

f(x) =
1

2
‖x‖22

`f (y;x) =
1

2
‖y − x‖22

Cf = max
x,x̂∈C

‖x̂− x‖22 = (diam C)2

If ∇f is L-Lipschitz, then Cf 6 L(diam C)2



Frank-Wolfe algorithm
Curvature constant (example)

f(x) =
1

2
‖x‖22

`f (y;x) =
1

2
‖y − x‖22

Cf = max
x,x̂∈C

‖x̂− x‖22 = (diam C)2

If ∇f is L-Lipschitz, then Cf 6 L(diam C)2



Frank-Wolfe algorithm
Approximate subproblem minimizers

x̂k+1 ∈
{
x̂ ∈ C

∣∣∣∣ `f (x̂;xk) ≤ min
x∈C

`f (x;xk) +
1

2
δαkCf

}



Frank-Wolfe algorithm
Exact line-search

αk ∈ arg min
α∈[0,1]

f
(

(1− α)xk + αx̂k+1
)



Frank-Wolfe algorithm
Fully-corrective reoptimization

xk+1 ∈ arg min
x∈conv{x0,x̂1,...,x̂k+1}

f(x)



Frank-Wolfe algorithm
Primal-convergence

Theorem (Jaggi, 2013)

f(xk)− inf
C
f ≤

2Cf
k + 2

(1 + δ)



Frank-Wolfe algorithm
Lower bound on primal convergence

Theorem (Canon and Cullum, 1968)

There are instances with strongly convex objectives for which the
original FWA generates sequences with the following behavior:
for all C, ε > 0 there are infinitely many k such that

f(xk)− inf
C
f ≥ C

k1+ε



Frank-Wolfe algorithm
Faster variants

I Linear convergence can be obtained in certain cases if
“away/drop steps” are used; see (GuéLat and Marcotte, 1986)
and (Lacoste-Julien and Jaggi, 2014)

I For smooth f and strongly convex C, a simple variant has
complexity O(1/k2) (Garber and Hazan, 2015)



Alternating Direction
Method of Multipliers



A motivating problem
Total-variation image denoising



A motivating problem
Total-variation image denoising



A motivating problem
Total-variation image denoising



A motivating problem
Total-variation image denoising



A motivating problem
Total-variation image denoising

minimize
f

1

2

∫
(f − fη)2 + λ

∫
‖∇f‖2



A motivating problem
Total-variation image denoising

minimize
x

1

2
‖x− xη‖22 + λ‖Dx‖1



A motivating problem
Total-variation image denoising

minimize
x,y

1

2
‖x− xη‖22 + λ‖y‖1 subject to Dx− y = 0



Equality-constrained optimization
First-order optimality conditions

minimize
x

f(x) subject to h(x) = 0

Necessary for x̄ to be a minimizer:

∇f(x̄) +∇h(x̄)z̄ = 0

h(x̄) = 0



Equality-constrained optimization
Quadratic penalization

xk+1 ∈ arg min
x

{
f(x) +

ρk
2
‖h(x)‖22

}

∇f(xk+1) +∇h(xk+1)[ρkh(xk+1)] = 0

I Need h(xk+1)→ 0 and ρk → +∞ for ρkh(xk+1)→ z̄ 6= 0



Equality-constrained optimization
Lagrangian minimization

xk+1 ∈ arg min
x

{
f(x) +

〈
zk, h(x)

〉}
zk+1 = zk + αkh(xk+1)

∇f(xk+1) +∇h(xk+1)zk = 0

I (Super)gradient ascent on concave dual

I Stability issues when argmin has multiple points at solution



Equality-constrained optimization
Method of Multipliers/Augmented Lagrangian

I MM ≈ Lagrangian Minimization + Quadratic Penalization

xk+1 ∈ arg min
x

{
f(x) +

〈
zk, h(x)

〉
+
ρk
2
‖h(x)‖22

}
zk+1 = zk + ρkh(xk+1)

∇f(xk+1) +∇h(xk+1)zk+1 = 0

I Will work once ρk sufficiently large (no need for ρk → +∞)

I Computing xk+1 can be tough



Model problem

minimize
x∈X

f(x) + λφ(Ax)

I A : X → Y linear

I φ : Y → R ∪ {+∞} convex and proximable

I f : X → R such that one can solve:

minimize
x∈X

f(x) +
1

2
‖b−Ax‖22



Model problem
Method of Multipliers

minimize
x,y

f(x) + λφ(y) subject to Ax− y = 0

(xk+1, yk+1) ∈ arg min
x,y

{
f(x) + λφ(y) +

ρk
2

∥∥∥∥Ax− y +
zk

ρk

∥∥∥∥2
2

}
zk+1 = zk + ρk(Ax

k+1 − yk+1)

I Still tricky joint minimization over x and y

I Alternate!



Model problem
Alternating Direction Method of Multipliers

xk+1 ∈ arg min
x

{
f(x) +

ρk
2

∥∥∥∥Ax− yk +
zk

ρk

∥∥∥∥2
2

}

yk+1 = arg min
y

{
λφ(y) +

ρk
2

∥∥∥∥Axk+1 − y +
zk

ρk

∥∥∥∥2
2

}

= proxρ−1
k λφ

[
Axk+1 +

zk

ρk

]

zk+1 = zk + ρk(Ax
k+1 − yk+1)



Model problem
Alternating Direction Method of multipliers

I Simpler iterations when ρk ≡ ρ (defining ẑk := zk/ρ)

xk+1 ∈ arg min
x

{
f(x) +

ρ

2

∥∥∥Ax− yk + ẑk
∥∥∥2
2

}

yk+1 = proxρ−1λφ

[
Axk+1 + ẑk

]
ẑk+1 = ẑk + (Axk+1 − yk+1)



ADMM
Total-variation denoising



ADMM
Total-variation denoising



ADMM
Total-variation denoising



ADMM
Convergence

I Function values decrease as O(1/k) (He and Yuan, 2012)

I Linear convergence if f or φ is strongly convex and under
certain conditions on A (Deng and Yin, 2012)



Other problems suitable for ADMM
In case I haven’t bored you out of your mind. . .



ADMM
What if f is only proximable?

minimize
x

f(x) + λφ(Ax)

minimize
x1,x2,y

f(x1) + λφ(y)

subject to

Ax2 − y = 0

x1 − x2 = 0



ADMM
What if f is only proximable?

minimize
x1,x2,y

f(x1) + λφ(y)

subject to

Ax2 − y = 0

x1 − x2 = 0

xk+1
1 = proxρ−1f

[
xk2 − ẑk2

]
yk+1 = proxρ−1λφ

[
Axk2 + ẑk1

]
xk+1
2 = (I +A∗A)−1(xk+1

1 + ẑk2 +A∗(yk+1 − ẑk1 ))

ẑk+1
1 = ẑk1 + (Axk+1

2 − yk+1)

ẑk+1
2 = ẑk2 + (xk+1

1 − xk+1
2 )



ADMM
Sum of proximable functions

minimize
x

m∑
i=1

fi(x)

xk+1
i = proxρ−1fi [x

k − ẑki ]

xk+1=
1

m

m∑
i=1

(xk+1
i + ẑki )

ẑk+1
i = ẑki + (xk+1

i − xk+1)

Distributed consensus



ADMM
Sum of proximable functions

minimize
x,x1,...,xm

m∑
i=1

fi(xi) subject to xi−x = 0, i = 1, . . . ,m

xk+1
i = proxρ−1fi [x

k − ẑki ]

xk+1=
1

m

m∑
i=1

(xk+1
i + ẑki )

ẑk+1
i = ẑki + (xk+1

i − xk+1)

Distributed consensus



ADMM
Sum of proximable functions

minimize
x,x1,...,xm

m∑
i=1

fi(xi) subject to xi−x = 0, i = 1, . . . ,m

xk+1
i = proxρ−1fi [x

k − ẑki ]

xk+1=
1

m

m∑
i=1

(xk+1
i + ẑki )

ẑk+1
i = ẑki + (xk+1

i − xk+1)

Distributed consensus



ADMM
Sum of proximable functions

minimize
x,x1,...,xm

m∑
i=1

fi(xi) subject to xi−x = 0, i = 1, . . . ,m

xk+1
i = proxρ−1fi [x

k − ẑki ]

xk+1=
1

m

m∑
i=1

(xk+1
i + ẑki )

ẑk+1
i = ẑki + (xk+1

i − xk+1)

Distributed consensus



ADMM
Regularized sum of proximable functions

minimize
x

m∑
i=1

fi(x) + λϕ(x)

xk+1
i = proxρ−1fi [x

k − ẑki ]

xk+1= prox(mρ)−1λϕ

[
1

m

m∑
i=1

(xk+1
i + ẑki )

]
ẑk+1
i = ẑki + (xk+1

i − xk+1)

Distributed consensus



ADMM
Regularized sum of proximable functions

minimize
x,x1,...,xm

m∑
i=1

fi(xi) + λϕ(x) subject to xi − x = 0, ∀i

xk+1
i = proxρ−1fi [x

k − ẑki ]

xk+1= prox(mρ)−1λϕ

[
1

m

m∑
i=1

(xk+1
i + ẑki )

]
ẑk+1
i = ẑki + (xk+1

i − xk+1)

Distributed consensus



ADMM
Regularized sum of proximable functions

minimize
x,x1,...,xm

m∑
i=1

fi(xi) + λϕ(x) subject to xi − x = 0, ∀i

xk+1
i = proxρ−1fi [x

k − ẑki ]

xk+1= prox(mρ)−1λϕ

[
1

m

m∑
i=1

(xk+1
i + ẑki )

]
ẑk+1
i = ẑki + (xk+1

i − xk+1)

Distributed consensus



Frank-Wolfe Algorithm
&

Alternating Direction Method of Multipliers

Ives Macêdo
ijamj@cs.ubc.ca

October 27, 2015


