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Introduction

• Learning relies on inductive bias.
• Capacity control → generalization

• Consider feedforward neural networks:
• Hypothesis class: weight vectors
• Highly expressive
• In general, empirical risk minimization is an NP-hard problem.

• Why do we succeed in learning such models?
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Outline

• Implicit regularization [3]
• Is it the network size? Or is it something else?

• Geometry of optimization [4]
• Magnitude/scale measures for neural networks

• Path-SGD [1]
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Implicit Regularization



Implicit Regularization - Experiment

• D input features
• C output classes
• H hidden units, σReLU(x) = max(0, x)
• n training pairs

• Truncated softmax cross entropy loss
• SGD + momentum + diminishing step

sizes
• No explicit regularization
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Implicit Regularization - Experiment

What happens when we increase H?

Expectation:

• Training error ↓.
• Test error might initially ↓ and then ↑.

Actual results:
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Implicit Regularization - Experiment

• Perhaps it’s due to the optimization
algorithm:

• Tries to find a solution with small
complexity.

• Increasing the network size might
help lower this complexity.

Different optimization algorithms
=⇒ Different implicit regularization

=⇒ Different generlization
Figure 1: Gunasekar et al.
https://bit.ly/32WEbXg
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Geometry of Optimization



Geometry of Optimization

• Optimization is tied to a distance metric
• Steepest descent w.r.t. `2 norm =⇒ gradient descent
• Steepest descent w.r.t. `1 norm =⇒ coordinate descent
• Steepest descent w.r.t. quadratic norm measured by the local (PD)

Hessian =⇒ Newton’s method
• Mirror descent w.r.t. entropic divergence =⇒ exponentiated

gradient descent
• . . .

• What’s the appropriate metric for neural networks?
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Notation

• Feedforward neural network fG,w ,σ : RD → RC

• Represented by a directed acyclic graph G(V ,E )

• w := weights vector
• d := depth of network
• V i

in = V d−i
out := set of hidden units in layer i

• σ = σReLU

• L(w) = 1
n
∑n

i=1 `(fG,w ,σ(xi ), yi ) where {(xi , yi )} are training
examples

• Update step: w (t+1) = w (t) + p(t)

• For gradient descent, pt = −η(t)∇L(w (t))
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Rescaling and Unbalancedness

• ReLU activation has the non-negative homogeneity property:
• σReLU(c · x) = c · σReLU(x) for c ≥ 0

• Define the rescaling function ρc,v (w) such that for any
(u1 → u2) ∈ E ,

ρc,v (wu1→u2 ) = w̃u1→u2 =


c · wu1→u2 if u2 = v ,
1
c · wu1→u2 if u1 = v ,
wu1→u2 otherwise.

• fG,w ,σReLU = fG,ρc,v (w),σReLU

• Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ∼ w̃ .

• An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

• i.e. w (0) ∼ w̃ (0) =⇒ w (t) ∼ w̃ (t) after t updates
• We say that a network is balanced if the norm of the weights are

roughly the same.
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Rescaling and Unbalancedness

• Gradient descent is not rescaling invariant
• Scaling down the weights will scale up the gradients.

• It also performs poorly on unbalanced networks.
• Blow up the smaller weights while keeping the larger weights almost

unchanged.
• Consider x = 1, η = 1, ∂L

∂ŷ = −1,
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Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.
• p = q = 1 gives us `1 regularization.
• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12



Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.

• p = q = 1 gives us `1 regularization.
• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12



Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.
• p = q = 1 gives us `1 regularization.

• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12



Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.
• p = q = 1 gives us `1 regularization.
• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12



Path-norm

µp,∞(w) = sup
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
1/p

• Problem with µp,∞?
• Not rescaling invariant – value is different for rescaling equivalent

networks.

• Left: µ1,∞ = 7, Right: µ1,∞ = 70.
• To use it as a penalty term, we should seek the minimum µp,∞

among all rescaling equivalent networks.
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Path-norm

• Consider the path vector π(w):
• Number of entries = number of paths from input units to output

units.
• Each entry = product of weights along that path.

• Define the `p-path regularizer as

‖π(w)‖p =

 ∑
vin[i]

e1→v1
e2→...

ed→vout[j]

∣∣∣∣∣
d∏

k=1
wek

∣∣∣∣∣
p


1/p

.
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Path-norm

π(w) = [6, 6, 1, 2, 1, 1, 4, 8], ‖π(w)‖1 = 29

• ‖π(w)‖p is rescaling invariant.
• To compute it efficiently, we can use dynamic programming on the

equivalent form written as nested sums.
• Lemma [4]: ‖π(w)‖p = minw̃∼w (µp,∞(w̃))d .

15



Path-SGD



Path-SGD

Steepest descent direction with respect to the path regularizer ‖π(w)‖p

w (t+1) = arg min
w
η〈∇L(w (t)),w〉+ 1

2‖π(w)− π(w (t))‖2
p

= arg min
w
η〈∇L(w (t)),w〉+

 ∑
vin[i]

e1→...
ed→vout[j]

( d∏
k=1

wek −
d∏

k=1
w (t)

ek

)p


2
p

= arg min
w

J (t)(w)

Update each edge weight independently,

w (t+1)
e = arg min

we
J (t)(w) s.t. ∀e′ 6=e we′ = w (t)

e′
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Path-SGD

Take the partial derivative with respect to we and set it to zero gives us
the update rule

w (t+1)
e = w (t)

e −
η

γp(w (t), e)
∂L
∂w (w (t))

where

γp(w , e) =

 ∑
vin[i]... e→...vout[j]

∏
ek 6=e
|wek |p


2/p

.

Path-normalized gradient descent or Path-SGD when stochastic.

• Approximate steepest descent with respect to the path norm.
• Rescaling invariant.
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Path-SGD: Efficient Implementation

• The update rule requires going through all paths in the network,
which is exponential in the number of layers.

• One update can now be computed in one forward-backward pass on
a minibatch.
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Path-SGD: Experiments

Setup:

• Compare `2-Path-SGD against (constant step size) SGD and
AdaGrad.

• Feedforward networks with 2 hidden layers (4000 hidden units).
• Both dropout (p = 0.5) and no dropout
• Balanced and unbalanced initializations

• Batch size = 100
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Experiment Results: without dropout
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Experiment Results: with dropout
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Conclusion



Conclusion

Summary:

• Implicit regularization from optimization plays a role in the
generalization of feedforward neural networks.

• Proposed an alternative to SGD that uses a different geomtry
(path-norm) that is rescaling invariant.

• Path-SGD seems to work well compared to constant step size SGD
and AdaGrad.
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Conclusion

Future directions:

• Combine Path-SGD with AdaGrad?
• Other rescaling invariant metric/geometry?
• Considerations for other activation functions that don’t necessarily

have non-negative homogeneity?
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