Geometry of Optimization and Implicit
Regularization in Deep Learning

B. Neyshabur, R. Tomioka, R. Salakhutdinov, N. Srebro. 2017.

Si Yi (Cathy) Meng
Oct 30, 2019

UBC MLRG

Introduction

e Learning relies on inductive bias.

e Capacity control — generalization

Introduction

e Learning relies on inductive bias.
e Capacity control — generalization
e Consider feedforward neural networks:

e Hypothesis class: weight vectors
e Highly expressive
e In general, empirical risk minimization is an NP-hard problem.

Introduction

e Learning relies on inductive bias.
e Capacity control — generalization
e Consider feedforward neural networks:

e Hypothesis class: weight vectors
e Highly expressive
e In general, empirical risk minimization is an NP-hard problem.

e Why do we succeed in learning such models?

e Implicit regularization [3]

e |s it the network size? Or is it something else?

e Implicit regularization [3]
e |s it the network size? Or is it something else?
e Geometry of optimization [4]

e Magnitude/scale measures for neural networks

e Implicit regularization [3]
e |s it the network size? Or is it something else?
e Geometry of optimization [4]

e Magnitude/scale measures for neural networks

e Path-SGD [1]

Implicit Regularization

Implicit Regularization - Experiment

D input features

C output classes

H hidden units, ogeLy(x) = max(0, x)

e n training pairs

Implicit Regularization - Experiment

D input features

C output classes

H hidden units, ogeLy(x) = max(0, x)

e n training pairs

Truncated softmax cross entropy loss

Implicit Regularization - Experiment

D input features

C output classes

H hidden units, ogeLy(x) = max(0, x)

e n training pairs

Truncated softmax cross entropy loss

e SGD + momentum + diminishing step

sizes

No explicit regularization

Implicit Regularization - Experiment

What happens when we increase H?

Implicit Regularization - Experiment

What happens when we increase H?
Expectation:

e Training error |.

e Test error might initially | and then 7.

Implicit Regularization - Experiment

What happens when we increase H?
Expectation:

e Training error |.

e Test error might initially | and then f.

Actual results:

' MNIST |—Training CIFAR-10 (—
0.09+ =8 Test (at convergence) =8=Test (at convergence)
=i Test (eaty stopping) 06 =t Test (early stopping)
008 q
007 osr
. 008 _oaf
5
2 0.05 2
W w
03
0.04r
0.03 ozl
0021
01
001
ol . . ol
a 8 16 32 64 128 256 5812 1K 2K 4K 4 8 16 32 64 128 286 512 1K 2K 4K
H H

Implicit Regularization - Experime

e Perhaps it's due to the optimization P
algorithm:
e Tries to find a solution with small
complexity.
e Increasing the network size might
help lower this complexity.

Different optimization algorithms
— Different implicit regularization

Figure 1: Gunasekar et al.
= Different generlization https://bit.1y/32WEbXg

https://bit.ly/32WEbXg

Geometry of Optimization

Geometry of Optimization

e Optimization is tied to a distance metric

e Steepest descent w.r.t. ¥ norm = gradient descent

e Steepest descent w.r.t. {1 norm = coordinate descent

e Steepest descent w.r.t. quadratic norm measured by the local (PD)
Hessian —> Newton's method

e Mirror descent w.r.t. entropic divergence = exponentiated
gradient descent

e What's the appropriate metric for neural networks?

e Feedforward neural network f , , : RP — RC

e Represented by a directed acyclic graph G(V/, E)

Feedforward neural network g, , : RP — R€

Represented by a directed acyclic graph G(V, E)

e w = weights vector

d := depth of network

Feedforward neural network g, , : RP — R€

Represented by a directed acyclic graph G(V, E)

e w = weights vector

d := depth of network

Vi = VAT = set of hidden units in layer i

® 0 = ORelU

Feedforward neural network g, , : RP — R€

Represented by a directed acyclic graph G(V, E)

e w = weights vector

d := depth of network

Vi = VAT = set of hidden units in layer i

® 0 = ORelU

n

L(w) =130 Ufew,o(xi),yi) where {(x;,y;)} are training
examples

Feedforward neural network g, , : RP — R€

Represented by a directed acyclic graph G(V, E)

e w := weights vector

d := depth of network

Vi = VAT = set of hidden units in layer i

® 0 = ORelU

° L(W) = %27:1 g(fG,w,o(Xi)J/i) where {(X,',y,')} are training
examples
e Update step: w(tt) = w(®) 1 p(®)

e For gradient descent, p* = —nOVL(w®)

Rescaling and Unbalancedness

e RelU activation has the non-negative homogeneity property:
e oreLu(c - x) = ¢ oretu(x) for c >0

Rescaling and Unbalancedness

e RelU activation has the non-negative homogeneity property:
e oreLu(c - x) = ¢ oretu(x) for c >0
o Define the rescaling function pc ,(w) such that for any
(U1 — U2) € E,

C Wy sy, ifun=v,

— _J)1 . _
pC7V(WU1ﬁU2) = Wu—up = c Wu—uw if up =v,
Wiy 11y otherwise.

Rescaling and Unbalancedness

e RelU activation has the non-negative homogeneity property:
e oreLu(c - x) = ¢ oretu(x) for c >0
o Define the rescaling function pc ,(w) such that for any
(U1 — U2) € E,

C Wy sy, ifun=v,

— _J)1 . _
pC7V(WU1ﬁU2) = Wu—up = c Wu—uw if up =v,
Wiy 11y otherwise.

O fGﬁvaReLU = fG,pc.v(W),UReLu

Rescaling and Unbalancedness

e RelU activation has the non-negative homogeneity property:
e oreLu(c - x) = ¢ oretu(x) for c >0
o Define the rescaling function pc ,(w) such that for any
(U1 — U2) €E,

C Wy sy, ifun=v,

— _J)1 . _
pC7V(WU1ﬁU2) = Wu—up = c Wu—uw if up =v,
Wiy 11y otherwise.

® fGﬁvaReLU = fG,pc.v(W),UReLu
e Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ~ W.

Rescaling and Unbalancedness

e RelU activation has the non-negative homogeneity property:
e oreLu(c - x) = ¢ oretu(x) for c >0
o Define the rescaling function pc ,(w) such that for any
(U1 — U2) €E,

C Wy sy, ifun=v,

— _J)1 . _
pC7V(WU1ﬁU2) = Wu—up = c Wu—uw if up =v,
Wiy 11y otherwise.

f6,w,oraw = fG,pc.v(W),aReLu

e Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ~ W.

e An optimization algorithm is rescaling invariant if the updates of

rescaling equivalent networks remain rescaling equivalent.

Rescaling and Unbalancedness

e RelU activation has the non-negative homogeneity property:
e oreLu(c - x) = ¢ oretu(x) for c >0
o Define the rescaling function pc ,(w) such that for any
(U1 — U2) €E,

C Wy sy, ifun=v,

— _J)1 . _
pC7V(WU1ﬁU2) = Wu—up = c Wu—uw if up =v,
Wiy 11y otherwise.

fG~,W7UReLU = fG,pc.v(W),aReLu

e Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ~ W.

e An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

e 0 — w® ~ W after t updates

o ie. w® ~ il

e We say that a network is balanced if the norm of the weights are
roughly the same.

Rescaling and Unbalancedness

e Gradient descent is not rescaling invariant
e Scaling down the weights will scale up the gradients.

Rescaling and Unbalancedness

e Gradient descent is not rescaling invariant
e Scaling down the weights will scale up the gradients.
e It also performs poorly on unbalanced networks.
e Blow up the smaller weights while keeping the larger weights almost
unchanged.

Rescaling and Unbalancedness

e Gradient descent is not rescaling invariant
e Scaling down the weights will scale up the gradients.
e It also performs poorly on unbalanced networks.
e Blow up the smaller weights while keeping the larger weights almost
unchanged.

e Consider x =1, n=1, g}é = -1,

1 100 ~100
Vv v SGD
Rescaling Update
A 10 ~104
u u u
1 100 ~100

(b) Weight Explosion in an unbalanced network

Rescaling and Unbalancedness

N

(c) Poor updates in an unbalanced network

10

Rescaling and Unbalancedness

25 L
—Balanced
2 —Unbalanced|

Objective

0.5
0

0 100 200 300
Epoch

(a) Training on MNIST

11

Group-norm

Define the group-norm type regularizer parameterized by p > 1 and
g < > as,

a/p\ /9

fip,q(w) = Z Z | Wu—sv)l?

veV \ (u—v)eE

12

Group-norm

Define the group-norm type regularizer parameterized by p > 1 and
g < > as,

a/p\ /9

fip,q(w) = Z Z | Wu—sv)l?

veV \ (u—v)eE

e p = q = 2 gives us /, regularization or weight decay.

12

Group-norm

Define the group-norm type regularizer parameterized by p > 1 and
g < > as,

a/p\ /9

fip,q(w) = Z Z | Wu—sv)l?

veV \ (u—v)eE

e p = q = 2 gives us /, regularization or weight decay.

e p =q =1 gives us {; regularization.

12

Group-norm

Define the group-norm type regularizer parameterized by p > 1 and
g < > as,

a/p\ /9

fip,q(w) = Z Z | Wu—sv)l?

veV \ (u—v)eE

e p = q = 2 gives us /, regularization or weight decay.
e p=q =1 gives us {; regularization.

e g = oo gives us the per-unit “max-norm” regularization:

1/p
o fipoo(W) = Sup,cv (Z(u_,v)eg |W(UHV)|p)
e Shown to be effective in ReLU networks.

12

1/p
,up.,oo(W) = sup Z |W(u—>v)|p

vev (u—v)eE

e Problem with yi, 7
e Not rescaling invariant — value is different for rescaling equivalent

networks.
1 1
1 2
Rescaling
u v =
6 4

13

1/p
,up.,oo(W) = sup Z |W(u—>v)|p

vev (u—v)eE

e Problem with yi, 7
e Not rescaling invariant — value is different for rescaling equivalent

networks.
1 1
1 2
Rescaling
u v =
6 4

o Left: p1,00 =7, Right: 1,00 = 70.
e To use it as a penalty term, we should seek the minimum i, o
among all rescaling equivalent networks.

13

e Consider the path vector 7(w):

e Number of entries = number of paths from input units to output
units.
e Each entry = product of weights along that path.

14

e Consider the path vector 7(w):
e Number of entries = number of paths from input units to output
units.
e Each entry = product of weights along that path.

e Define the /,-path regularizer as

1/p

d P

[(w)ll, = >

1 €1 €2 €d g
Vin[[] = vl = voul)]

We,
k=1

14

1 2
Rescaling
u v
6 4
7T(W): [6767172a1)17478]a Hﬂ'(W)Hl :29

o |[m(w)]|, is rescaling invariant.

e To compute it efficiently, we can use dynamic programming on the

equivalent form written as nested sums.

o Lemma [4]: [[7(w)[l, = mingu (tp.00(#))".

15

Path-SGD

Path-SGD

Steepest descent direction with respect to the path regularizer ||7(w)]|,

1
wlt+l) — arg min n(VL(w(t)), w) + EHﬂ'(W) = 71'(W("b))\|,2J

P

d d B
= arg min n(VL(w®), w) + Z (We, — H w§:)>
" 1 k=1

Vin[13 .. Bvoul] <=

= arg min J®(w)

16

Path-SGD

Steepest descent direction with respect to the path regularizer ||7(w)]|,

w1 = arg min n(VL(w(t)), w) + %Hﬂ'(w) = 71'(W("b))\|,2J

P

d d B
= argmin n(VLw®), w) + Z (We, — H w§:)>
1 k=1

Vin[13 .. Bvoul] <=

= arg min J®(w)
Update each edge weight independently,

w{ = argmin J)(w) St Verze Wer = ng’t)

We

16

Path-SGD

Take the partial derivative with respect to w, and set it to zero gives us
the update rule

L
W§t+1) _ Wét) om0

= (w®
Yp(wlt), e) 8W(W)

where
2/p

Tp(w; €) = > I iwel

Vinli]. 5 Vouelj] 7

Path-normalized gradient descent or Path-SGD when stochastic.

17

Path-SGD

Take the partial derivative with respect to w, and set it to zero gives us
the update rule

7 oL

(t+1) — (0) _ 4 Z%
We We ’Yp(W(t), e) Ow

(w®)

where
2/p

Tp(w; €) = > I iwel

Vinli]. 5 Vouelj] 7

Path-normalized gradient descent or Path-SGD when stochastic.

e Approximate steepest descent with respect to the path norm.

e Rescaling invariant.

17

Path-SGD: Efficient Implementation

e The update rule requires going through all paths in the network,
which is exponential in the number of layers.

18

Path-SGD: Efficient Implementation

e The update rule requires going through all paths in the network,
which is exponential in the number of layers.

Algorithm 1 Path-SGD update rule
: Ve Tin(v) = 1 > Initialization

H V‘JEW‘:I "r'gm(l-') =1
:fori=1tod do

1

2

3

5 Vermal®) = Cusngen V() W
5t Vuelr’u':“’:"Wt(v] = z{u—m)EE |w[ﬂ:u) |;D ‘rﬂul(u]
&

7

8

: end for
: V[u—m]e.b’ T(wft)r (u‘ U)) = Yin (u)l!;p,?ou((,v)!.ip
: Veepwl ™D = wlt) - ﬂ—u}?—”ﬂ%(wm) & Update Rule

18

e The update rule requires going through all paths in the network,

which is exponential in the number of layers.

Algorithm 1 Path-SGD update rule
1: VU'EViE Tin(w) =1 &> Initialization
2 Woeyp Tou(v) =1
3:fori=1tod do
£ Veym(®) = Suoges) [0’
5t Vt'E]r'u':..T““t(v] = z{u—m)EE |w['-':'-l) |;D ‘r“’“t(u]
6
7
B

: end for
: V[“-"']EE T(wft)r (u‘v)) = '}‘in(u)g”p'}‘oul(ﬂ)

t Veepul ™) = w® — m%(wm) & Update Rule

2p

e One update can now be computed in one forward-backward pass on
a minibatch.

18

Path-SGD: Experiments

Setup:

e Compare ¢-Path-SGD against (constant step size) SGD and
AdaGrad.

19

Path-SGD: Experiments

Setup:

e Compare ¢-Path-SGD against (constant step size) SGD and
AdaGrad.

o Feedforward networks with 2 hidden layers (4000 hidden units).

e Both dropout (p = 0.5) and no dropout
e Balanced and unbalanced initializations

19

Path-SGD: Experiments

Setup:

e Compare ¢-Path-SGD against (constant step size) SGD and
AdaGrad.

o Feedforward networks with 2 hidden layers (4000 hidden units).

e Both dropout (p = 0.5) and no dropout
e Balanced and unbalanced initializations

e Batch size = 100

19

Path-SGD: Experiments

Setup:

e Compare ¢-Path-SGD against (constant step size) SGD and
AdaGrad.

o Feedforward networks with 2 hidden layers (4000 hidden units).

e Both dropout (p = 0.5) and no dropout
e Balanced and unbalanced initializations

e Batch size = 100

Table 1: General information on datasets used in the experiments on feedforward networks.

Data Set Dimensionality Classes Training Set Test Set
CIFAR-10 3072 (32 x 32 color) 10 50000 10000
CIFAR-100 3072 (32 x 32 color) 100 50000 10000
MNIST 784 (28 x 28 grayscale) 10 60000 10000
SVHN 3072 (32 x 32 color) 10 73257 26032

19

Experiment Results: without dropou

Cross-Entropy Training Loss 0/1 Training Error 0/1 Test Error
0.
— Path-SGD - Unbalanced]
2 WWWN*»MM [~ 56D - Balancod
-+ 56D - Unbalanced
] 015 055 |— AdaGrad - Balanced
%' 15 |- AdaGrad - Unbalanced
04 X
=] 1
8]
o5l 0.05 ?
20 4 60 s 10 2 40 60 80 100 2 40 & 80 100
o A
s M o8 o
- 3 0.5
% . 0.75]
g 2 0.0
© 1 0.03 o
™ 4o s s o 20 40 60 80 100 0 40 e 80 10
2. L L
o015 0.0
5
Z [00 0.02sf
s 1
0.005] 0.02]
0.
RN 20 40 60 80 100 0 40 6 80 100
Y 0. 0
e o
2 0.15
018
Z 15}
§ 04 017
2] 1 01§
0.05
o5 015
20 S0 100 W 40 6 0 100 2 o 100

] W w0 s
epoct! Epoch Epoch 20

Experiment Results: with dropout

Cross-Entropy Training Loss 0/1 Training Error 0/1 Test Error

pout]

—Path-SGD + Droj
- 5GD + Dropout
| AdaGrad + Dropout

CIFAR-10

o4
0 20 4 6 80 10 20 40 60 s 100 ™ 40 e 8 10
4

8 3

izl 2f ’

<

5]

Q

8
IS
3
2
g

MNIST
g & ¢
E § & ¢

:
u
:
:
g
5

0.14f

0413

SVHN

20 40 &0 80 20 40 60 80
NI o epoct 21

H

Conclusion

Conclusion

Summary:

e Implicit regularization from optimization plays a role in the
generalization of feedforward neural networks.

e Proposed an alternative to SGD that uses a different geomtry
(path-norm) that is rescaling invariant.

e Path-SGD seems to work well compared to constant step size SGD
and AdaGrad.

22

Conclusion

Future directions:

e Combine Path-SGD with AdaGrad?
e Other rescaling invariant metric/geometry?

e Considerations for other activation functions that don't necessarily
have non-negative homogeneity?

23

References i

[§ B. Neyshabur, R. R. Salakhutdinov, and N. Srebro.
Path-SGD: Path-normalized optimization in deep neural
networks.

In Advances in Neural Information Processing Systems, pages
2422-2430, 2015.

@ B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro.
Geometry of Optimization and Implicit Regularization in Deep
Learning.

CoRR, 2017.

24

References ii

@ B. Neyshabur, R. Tomioka, and N. Srebro.
In Search of the Real Inductive Bias: On the Role of Implicit
Regularization in Deep Learning.
In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track
Proceedings, 2015.

@ B. Neyshabur, R. Tomioka, and N. Srebro.
Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376-1401, 2015.

25

	Implicit Regularization
	Geometry of Optimization
	Path-SGD
	Conclusion

