
Geometry of Optimization and Implicit
Regularization in Deep Learning
B. Neyshabur, R. Tomioka, R. Salakhutdinov, N. Srebro. 2017.

Si Yi (Cathy) Meng
Oct 30, 2019

UBC MLRG

Introduction

• Learning relies on inductive bias.
• Capacity control → generalization

• Consider feedforward neural networks:
• Hypothesis class: weight vectors
• Highly expressive
• In general, empirical risk minimization is an NP-hard problem.

• Why do we succeed in learning such models?

1

Introduction

• Learning relies on inductive bias.
• Capacity control → generalization

• Consider feedforward neural networks:
• Hypothesis class: weight vectors
• Highly expressive
• In general, empirical risk minimization is an NP-hard problem.

• Why do we succeed in learning such models?

1

Introduction

• Learning relies on inductive bias.
• Capacity control → generalization

• Consider feedforward neural networks:
• Hypothesis class: weight vectors
• Highly expressive
• In general, empirical risk minimization is an NP-hard problem.

• Why do we succeed in learning such models?

1

Outline

• Implicit regularization [3]
• Is it the network size? Or is it something else?

• Geometry of optimization [4]
• Magnitude/scale measures for neural networks

• Path-SGD [1]

2

Outline

• Implicit regularization [3]
• Is it the network size? Or is it something else?

• Geometry of optimization [4]
• Magnitude/scale measures for neural networks

• Path-SGD [1]

2

Outline

• Implicit regularization [3]
• Is it the network size? Or is it something else?

• Geometry of optimization [4]
• Magnitude/scale measures for neural networks

• Path-SGD [1]

2

Implicit Regularization

Implicit Regularization - Experiment

• D input features
• C output classes
• H hidden units, σReLU(x) = max(0, x)
• n training pairs

• Truncated softmax cross entropy loss
• SGD + momentum + diminishing step

sizes
• No explicit regularization

3

Implicit Regularization - Experiment

• D input features
• C output classes
• H hidden units, σReLU(x) = max(0, x)
• n training pairs
• Truncated softmax cross entropy loss

• SGD + momentum + diminishing step
sizes

• No explicit regularization

3

Implicit Regularization - Experiment

• D input features
• C output classes
• H hidden units, σReLU(x) = max(0, x)
• n training pairs
• Truncated softmax cross entropy loss
• SGD + momentum + diminishing step

sizes
• No explicit regularization

3

Implicit Regularization - Experiment

What happens when we increase H?

Expectation:

• Training error ↓.
• Test error might initially ↓ and then ↑.

Actual results:

4

Implicit Regularization - Experiment

What happens when we increase H?
Expectation:

• Training error ↓.
• Test error might initially ↓ and then ↑.

Actual results:

4

Implicit Regularization - Experiment

What happens when we increase H?
Expectation:

• Training error ↓.
• Test error might initially ↓ and then ↑.

Actual results:

4

Implicit Regularization - Experiment

• Perhaps it’s due to the optimization
algorithm:

• Tries to find a solution with small
complexity.

• Increasing the network size might
help lower this complexity.

Different optimization algorithms
=⇒ Different implicit regularization

=⇒ Different generlization
Figure 1: Gunasekar et al.
https://bit.ly/32WEbXg

5

https://bit.ly/32WEbXg

Geometry of Optimization

Geometry of Optimization

• Optimization is tied to a distance metric
• Steepest descent w.r.t. `2 norm =⇒ gradient descent
• Steepest descent w.r.t. `1 norm =⇒ coordinate descent
• Steepest descent w.r.t. quadratic norm measured by the local (PD)

Hessian =⇒ Newton’s method
• Mirror descent w.r.t. entropic divergence =⇒ exponentiated

gradient descent
• . . .

• What’s the appropriate metric for neural networks?

6

Notation

• Feedforward neural network fG,w ,σ : RD → RC

• Represented by a directed acyclic graph G(V ,E)

• w := weights vector
• d := depth of network
• V i

in = V d−i
out := set of hidden units in layer i

• σ = σReLU

• L(w) = 1
n
∑n

i=1 `(fG,w ,σ(xi), yi) where {(xi , yi)} are training
examples

• Update step: w (t+1) = w (t) + p(t)

• For gradient descent, pt = −η(t)∇L(w (t))

7

Notation

• Feedforward neural network fG,w ,σ : RD → RC

• Represented by a directed acyclic graph G(V ,E)
• w := weights vector
• d := depth of network

• V i
in = V d−i

out := set of hidden units in layer i
• σ = σReLU

• L(w) = 1
n
∑n

i=1 `(fG,w ,σ(xi), yi) where {(xi , yi)} are training
examples

• Update step: w (t+1) = w (t) + p(t)

• For gradient descent, pt = −η(t)∇L(w (t))

7

Notation

• Feedforward neural network fG,w ,σ : RD → RC

• Represented by a directed acyclic graph G(V ,E)
• w := weights vector
• d := depth of network
• V i

in = V d−i
out := set of hidden units in layer i

• σ = σReLU

• L(w) = 1
n
∑n

i=1 `(fG,w ,σ(xi), yi) where {(xi , yi)} are training
examples

• Update step: w (t+1) = w (t) + p(t)

• For gradient descent, pt = −η(t)∇L(w (t))

7

Notation

• Feedforward neural network fG,w ,σ : RD → RC

• Represented by a directed acyclic graph G(V ,E)
• w := weights vector
• d := depth of network
• V i

in = V d−i
out := set of hidden units in layer i

• σ = σReLU

• L(w) = 1
n
∑n

i=1 `(fG,w ,σ(xi), yi) where {(xi , yi)} are training
examples

• Update step: w (t+1) = w (t) + p(t)

• For gradient descent, pt = −η(t)∇L(w (t))

7

Notation

• Feedforward neural network fG,w ,σ : RD → RC

• Represented by a directed acyclic graph G(V ,E)
• w := weights vector
• d := depth of network
• V i

in = V d−i
out := set of hidden units in layer i

• σ = σReLU

• L(w) = 1
n
∑n

i=1 `(fG,w ,σ(xi), yi) where {(xi , yi)} are training
examples

• Update step: w (t+1) = w (t) + p(t)

• For gradient descent, pt = −η(t)∇L(w (t))

7

Rescaling and Unbalancedness

• ReLU activation has the non-negative homogeneity property:
• σReLU(c · x) = c · σReLU(x) for c ≥ 0

• Define the rescaling function ρc,v (w) such that for any
(u1 → u2) ∈ E ,

ρc,v (wu1→u2) = w̃u1→u2 =


c · wu1→u2 if u2 = v ,
1
c · wu1→u2 if u1 = v ,
wu1→u2 otherwise.

• fG,w ,σReLU = fG,ρc,v (w),σReLU

• Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ∼ w̃ .

• An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

• i.e. w (0) ∼ w̃ (0) =⇒ w (t) ∼ w̃ (t) after t updates
• We say that a network is balanced if the norm of the weights are

roughly the same.

8

Rescaling and Unbalancedness

• ReLU activation has the non-negative homogeneity property:
• σReLU(c · x) = c · σReLU(x) for c ≥ 0

• Define the rescaling function ρc,v (w) such that for any
(u1 → u2) ∈ E ,

ρc,v (wu1→u2) = w̃u1→u2 =


c · wu1→u2 if u2 = v ,
1
c · wu1→u2 if u1 = v ,
wu1→u2 otherwise.

• fG,w ,σReLU = fG,ρc,v (w),σReLU

• Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ∼ w̃ .

• An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

• i.e. w (0) ∼ w̃ (0) =⇒ w (t) ∼ w̃ (t) after t updates
• We say that a network is balanced if the norm of the weights are

roughly the same.

8

Rescaling and Unbalancedness

• ReLU activation has the non-negative homogeneity property:
• σReLU(c · x) = c · σReLU(x) for c ≥ 0

• Define the rescaling function ρc,v (w) such that for any
(u1 → u2) ∈ E ,

ρc,v (wu1→u2) = w̃u1→u2 =


c · wu1→u2 if u2 = v ,
1
c · wu1→u2 if u1 = v ,
wu1→u2 otherwise.

• fG,w ,σReLU = fG,ρc,v (w),σReLU

• Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ∼ w̃ .

• An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

• i.e. w (0) ∼ w̃ (0) =⇒ w (t) ∼ w̃ (t) after t updates
• We say that a network is balanced if the norm of the weights are

roughly the same.

8

Rescaling and Unbalancedness

• ReLU activation has the non-negative homogeneity property:
• σReLU(c · x) = c · σReLU(x) for c ≥ 0

• Define the rescaling function ρc,v (w) such that for any
(u1 → u2) ∈ E ,

ρc,v (wu1→u2) = w̃u1→u2 =


c · wu1→u2 if u2 = v ,
1
c · wu1→u2 if u1 = v ,
wu1→u2 otherwise.

• fG,w ,σReLU = fG,ρc,v (w),σReLU

• Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ∼ w̃ .

• An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

• i.e. w (0) ∼ w̃ (0) =⇒ w (t) ∼ w̃ (t) after t updates
• We say that a network is balanced if the norm of the weights are

roughly the same.

8

Rescaling and Unbalancedness

• ReLU activation has the non-negative homogeneity property:
• σReLU(c · x) = c · σReLU(x) for c ≥ 0

• Define the rescaling function ρc,v (w) such that for any
(u1 → u2) ∈ E ,

ρc,v (wu1→u2) = w̃u1→u2 =


c · wu1→u2 if u2 = v ,
1
c · wu1→u2 if u1 = v ,
wu1→u2 otherwise.

• fG,w ,σReLU = fG,ρc,v (w),σReLU

• Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ∼ w̃ .

• An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

• i.e. w (0) ∼ w̃ (0) =⇒ w (t) ∼ w̃ (t) after t updates
• We say that a network is balanced if the norm of the weights are

roughly the same.

8

Rescaling and Unbalancedness

• ReLU activation has the non-negative homogeneity property:
• σReLU(c · x) = c · σReLU(x) for c ≥ 0

• Define the rescaling function ρc,v (w) such that for any
(u1 → u2) ∈ E ,

ρc,v (wu1→u2) = w̃u1→u2 =


c · wu1→u2 if u2 = v ,
1
c · wu1→u2 if u1 = v ,
wu1→u2 otherwise.

• fG,w ,σReLU = fG,ρc,v (w),σReLU

• Two networks are rescaling equivalent if one can be transformed to
another via a sequence of rescalings, denoted w ∼ w̃ .

• An optimization algorithm is rescaling invariant if the updates of
rescaling equivalent networks remain rescaling equivalent.

• i.e. w (0) ∼ w̃ (0) =⇒ w (t) ∼ w̃ (t) after t updates
• We say that a network is balanced if the norm of the weights are

roughly the same.
8

Rescaling and Unbalancedness

• Gradient descent is not rescaling invariant
• Scaling down the weights will scale up the gradients.

• It also performs poorly on unbalanced networks.
• Blow up the smaller weights while keeping the larger weights almost

unchanged.
• Consider x = 1, η = 1, ∂L

∂ŷ = −1,

9

Rescaling and Unbalancedness

• Gradient descent is not rescaling invariant
• Scaling down the weights will scale up the gradients.

• It also performs poorly on unbalanced networks.
• Blow up the smaller weights while keeping the larger weights almost

unchanged.

• Consider x = 1, η = 1, ∂L
∂ŷ = −1,

9

Rescaling and Unbalancedness

• Gradient descent is not rescaling invariant
• Scaling down the weights will scale up the gradients.

• It also performs poorly on unbalanced networks.
• Blow up the smaller weights while keeping the larger weights almost

unchanged.
• Consider x = 1, η = 1, ∂L

∂ŷ = −1,

9

Rescaling and Unbalancedness

10

Rescaling and Unbalancedness

11

Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.
• p = q = 1 gives us `1 regularization.
• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12

Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.

• p = q = 1 gives us `1 regularization.
• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12

Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.
• p = q = 1 gives us `1 regularization.

• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12

Group-norm

Define the group-norm type regularizer parameterized by p ≥ 1 and
q ≤ ∞ as,

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
q/p


1/q

• p = q = 2 gives us `2 regularization or weight decay.
• p = q = 1 gives us `1 regularization.
• q =∞ gives us the per-unit “max-norm” regularization:

• µp,∞(w) = supv∈V

(∑
(u→v)∈E |w(u→v)|p

)1/p

• Shown to be effective in ReLU networks.

12

Path-norm

µp,∞(w) = sup
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
1/p

• Problem with µp,∞?
• Not rescaling invariant – value is different for rescaling equivalent

networks.

• Left: µ1,∞ = 7, Right: µ1,∞ = 70.
• To use it as a penalty term, we should seek the minimum µp,∞

among all rescaling equivalent networks.

13

Path-norm

µp,∞(w) = sup
v∈V

 ∑
(u→v)∈E

|w(u→v)|p
1/p

• Problem with µp,∞?
• Not rescaling invariant – value is different for rescaling equivalent

networks.

• Left: µ1,∞ = 7, Right: µ1,∞ = 70.
• To use it as a penalty term, we should seek the minimum µp,∞

among all rescaling equivalent networks.
13

Path-norm

• Consider the path vector π(w):
• Number of entries = number of paths from input units to output

units.
• Each entry = product of weights along that path.

• Define the `p-path regularizer as

‖π(w)‖p =

 ∑
vin[i]

e1→v1
e2→...

ed→vout[j]

∣∣∣∣∣
d∏

k=1
wek

∣∣∣∣∣
p


1/p

.

14

Path-norm

• Consider the path vector π(w):
• Number of entries = number of paths from input units to output

units.
• Each entry = product of weights along that path.

• Define the `p-path regularizer as

‖π(w)‖p =

 ∑
vin[i]

e1→v1
e2→...

ed→vout[j]

∣∣∣∣∣
d∏

k=1
wek

∣∣∣∣∣
p


1/p

.

14

Path-norm

π(w) = [6, 6, 1, 2, 1, 1, 4, 8], ‖π(w)‖1 = 29

• ‖π(w)‖p is rescaling invariant.
• To compute it efficiently, we can use dynamic programming on the

equivalent form written as nested sums.
• Lemma [4]: ‖π(w)‖p = minw̃∼w (µp,∞(w̃))d .

15

Path-SGD

Path-SGD

Steepest descent direction with respect to the path regularizer ‖π(w)‖p

w (t+1) = arg min
w
η〈∇L(w (t)),w〉+ 1

2‖π(w)− π(w (t))‖2
p

= arg min
w
η〈∇L(w (t)),w〉+

 ∑
vin[i]

e1→...
ed→vout[j]

(d∏
k=1

wek −
d∏

k=1
w (t)

ek

)p


2
p

= arg min
w

J (t)(w)

Update each edge weight independently,

w (t+1)
e = arg min

we
J (t)(w) s.t. ∀e′ 6=e we′ = w (t)

e′

16

Path-SGD

Steepest descent direction with respect to the path regularizer ‖π(w)‖p

w (t+1) = arg min
w
η〈∇L(w (t)),w〉+ 1

2‖π(w)− π(w (t))‖2
p

= arg min
w
η〈∇L(w (t)),w〉+

 ∑
vin[i]

e1→...
ed→vout[j]

(d∏
k=1

wek −
d∏

k=1
w (t)

ek

)p


2
p

= arg min
w

J (t)(w)

Update each edge weight independently,

w (t+1)
e = arg min

we
J (t)(w) s.t. ∀e′ 6=e we′ = w (t)

e′

16

Path-SGD

Take the partial derivative with respect to we and set it to zero gives us
the update rule

w (t+1)
e = w (t)

e −
η

γp(w (t), e)
∂L
∂w (w (t))

where

γp(w , e) =

 ∑
vin[i]... e→...vout[j]

∏
ek 6=e
|wek |p


2/p

.

Path-normalized gradient descent or Path-SGD when stochastic.

• Approximate steepest descent with respect to the path norm.
• Rescaling invariant.

17

Path-SGD

Take the partial derivative with respect to we and set it to zero gives us
the update rule

w (t+1)
e = w (t)

e −
η

γp(w (t), e)
∂L
∂w (w (t))

where

γp(w , e) =

 ∑
vin[i]... e→...vout[j]

∏
ek 6=e
|wek |p


2/p

.

Path-normalized gradient descent or Path-SGD when stochastic.

• Approximate steepest descent with respect to the path norm.
• Rescaling invariant.

17

Path-SGD: Efficient Implementation

• The update rule requires going through all paths in the network,
which is exponential in the number of layers.

• One update can now be computed in one forward-backward pass on
a minibatch.

18

Path-SGD: Efficient Implementation

• The update rule requires going through all paths in the network,
which is exponential in the number of layers.

• One update can now be computed in one forward-backward pass on
a minibatch.

18

Path-SGD: Efficient Implementation

• The update rule requires going through all paths in the network,
which is exponential in the number of layers.

• One update can now be computed in one forward-backward pass on
a minibatch.

18

Path-SGD: Experiments

Setup:

• Compare `2-Path-SGD against (constant step size) SGD and
AdaGrad.

• Feedforward networks with 2 hidden layers (4000 hidden units).
• Both dropout (p = 0.5) and no dropout
• Balanced and unbalanced initializations

• Batch size = 100

19

Path-SGD: Experiments

Setup:

• Compare `2-Path-SGD against (constant step size) SGD and
AdaGrad.

• Feedforward networks with 2 hidden layers (4000 hidden units).
• Both dropout (p = 0.5) and no dropout
• Balanced and unbalanced initializations

• Batch size = 100

19

Path-SGD: Experiments

Setup:

• Compare `2-Path-SGD against (constant step size) SGD and
AdaGrad.

• Feedforward networks with 2 hidden layers (4000 hidden units).
• Both dropout (p = 0.5) and no dropout
• Balanced and unbalanced initializations

• Batch size = 100

19

Path-SGD: Experiments

Setup:

• Compare `2-Path-SGD against (constant step size) SGD and
AdaGrad.

• Feedforward networks with 2 hidden layers (4000 hidden units).
• Both dropout (p = 0.5) and no dropout
• Balanced and unbalanced initializations

• Batch size = 100

19

Experiment Results: without dropout

20

Experiment Results: with dropout

21

Conclusion

Conclusion

Summary:

• Implicit regularization from optimization plays a role in the
generalization of feedforward neural networks.

• Proposed an alternative to SGD that uses a different geomtry
(path-norm) that is rescaling invariant.

• Path-SGD seems to work well compared to constant step size SGD
and AdaGrad.

22

Conclusion

Future directions:

• Combine Path-SGD with AdaGrad?
• Other rescaling invariant metric/geometry?
• Considerations for other activation functions that don’t necessarily

have non-negative homogeneity?

23

References i

B. Neyshabur, R. R. Salakhutdinov, and N. Srebro.
Path-SGD: Path-normalized optimization in deep neural
networks.
In Advances in Neural Information Processing Systems, pages
2422–2430, 2015.
B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro.
Geometry of Optimization and Implicit Regularization in Deep
Learning.
CoRR, 2017.

24

References ii

B. Neyshabur, R. Tomioka, and N. Srebro.
In Search of the Real Inductive Bias: On the Role of Implicit
Regularization in Deep Learning.
In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track
Proceedings, 2015.

B. Neyshabur, R. Tomioka, and N. Srebro.
Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376–1401, 2015.

25

	Implicit Regularization
	Geometry of Optimization
	Path-SGD
	Conclusion

