
Implicit Regularization in Matrix 
Factorization

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, 

Behnam Neyshabur, Nathan Srebro (May 2017)

https://arxiv.org/abs/1705.09280

UBC MLRG: 6 – Nov – 2019 

Betty Shea

https://arxiv.org/abs/1705.09280


MLRG Theme: Good Solutions

• In the overparameterized setting, why do we tend to end up with the 
good solutions? 

• Sharp/ flat minima

• Implicit regularization
• Last week: geometry of optimization

• This week: similar theme



Implicit Regularization

• Our choice of optimization algorithm biases us towards certain types 
of solution (without explicit regularization)

• Coordinate descent: L1 norm

• Gradient descent: L2 norm

• Matrix factorization: this presentation

• Logistic regression: stay tuned!

• But we don’t always get to exactly this norm in practice



Matrix Factorization

• Can be modeled by a 2-layer neural network with linear transfer. 
Gradient descent on the entries of the factor matrices (on the weights 
of the network).

• Example: matrix completion/ collaborative filtering problems

• Chi et al. Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview. 
https://www.princeton.edu/~yc5/publications/NcxOverview_Arxiv.pdf

• PCA is also called a matrix factorization model

https://www.princeton.edu/~yc5/publications/NcxOverview_Arxiv.pdf


Main conjecture (informal)

• Gradient descent on a full dimensional matrix factorization converges 
to the minimum nuclear norm solution with
• Small enough step sizes

• Initialization close enough to the origin

• Implicit regularization occurs with full gradient descent

• Nuclear norm of X = sum of the singular values of X



Problem Setting

• Least squares objective over symmetric positive semidefinite matrix X

• Minimize on factorization of X instead with d=n



Main Results: Conjecture

where (1) refers to the least square objective over X in a previous slide,

where            ensures that the initial point gets close to the origin,

where                     is the limit point and is defined as

for the factorized gradient flow                                                     initialized at  

, residuals at time t                           , A* is the adjoint of A 



Some Details

• Factorized objective is non-convex optimization problem

• Analysis uses gradient flow instead of gradient descent

• Factorized gradient flow equation:

• Regular gradient flow equation:



Main Results: Supporting Evidence

• Simulation of matrix reconstruction problem

• Theoretical analysis

• Empirical results of matrix completion problem



Simulation of Matrix Reconstruction

• Run gradient descent on U until convergence
• Different step sizes, initialization

• Measure reconstruction error 
• Across different values of d

• Pick              , generate                random measurement matrices and 
set 
• Chose three different 50 x 50 X*



Simulation Results: Matrix Reconstruction



Simulated Results: Matrix Reconstruction



Summary of Matrix Reconstruction Results 

• The solution with the lowest reconstruction error comes from 
initializing close to the origin and taking very small fixed step sizes 

• Minimizing to the factorized objective performs better generally
• Except in the case where reconstruction is impossible

• There is some evidence that gradient descent on the factorized 
objective biases us towards minimum nuclear norm solution



Theoretical Results

• Two warmup cases
• gradient descent on original convex objective: zero-error solution minimizes 

the Frobenius norm  

• proved informally that their main conjecture holds for m=1 

• Case where        commute
• Formal proof of their main conjecture

• Case where        do not commute
• Solution is no longer simple and is a “time ordered exponential”



Theoretical Analysis:       commute

• Goal: show that a minimum nuclear norm solution with zero training 
error satisfies Karush-Kuhn-Tucker (KKT) conditions where                   
such that

• The solution to                                       is 

• commute mean that they have at least one shared eigenbasis

. 



Theoretical Analysis:       commute

• For any     ,               and      are both diagonalizable by                    .

This means that                     converges to 

• Enough to satisfy 

• Introduce                     and                               Show that

as        goes to infinity 



Theoretical Analysis:       commute

• Proof does not rely on any particular form of the residuals

• Proof relies on showing that gradient flow stays within the manifold



Theoretical Analysis:       do not commute

• The solution to the gradient flow equation is  

• A “time-ordered exponential” where the order of multiplication 
matters.   

• Hard to characterize a manifold that the solution stays within without 
additional restrictions on the form of the residuals 



Empirical Results: Matrix Completion

• Simulated data sampled from different probability distribution
• Gaussian, uniform and power-law

• Again, the same 3 planted X*

• Compared the nuclear norm of solutions from different methods

• Used data from Movielens
• About 100,000 ratings from about 950 users and 1700 movies.



Simulated Results: Matrix Completion



Simulated Results: Matrix Completion



Non-Simulated Results: Matrix Completion



Summary

• Paper argues that there is implicit regularization in gradient descent 
over matrix factorization

• Implicit regularization/ bias is towards a minimum nuclear norm 
solution

• Hard to prove theoretically for the general case of matrix factorization

• Newer paper “Implicit Regularization in Deep Matrix Factorization”. 
(Arora et al). https://arxiv.org/pdf/1905.13655.pdf

https://arxiv.org/pdf/1905.13655.pdf
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