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MLRG Theme: Good Solutions

* In the overparameterized setting, why do we tend to end up with the
good solutions?

 Sharp/ flat minima

* Implicit regularization
* Last week: geometry of optimization
* This week: similar theme



Implicit Regularization

* Our choice of optimization algorithm biases us towards certain types
of solution (without explicit regularization)

* Coordinate descent: L1 norm

* Gradient descent: L2 norm

* Matrix factorization: this presentation
* Logistic regression: stay tuned!

* But we don’t always get to exactly this norm in practice



Matrix Factorization

* Can be modeled by a 2-layer neural network with linear transfer.
Gradient descent on the entries of the factor matrices (on the weights
of the network).

* Example: matrix completion/ collaborative filtering problems

* PCA is also called a matrix factorization model

e Chi et al. Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview.
https://www.princeton.edu/~yc5/publications/NcxOverview Arxiv.pdf
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Main conjecture (informal)

* Gradient descent on a full dimensional matrix factorization converges
to the minimum nuclear norm solution with

* Small enough step sizes
* |nitialization close enough to the origin

* Implicit regularization occurs with full gradient descent

* Nuclear norm of X = sum of the singular values of X
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Problem Setting

 Least squares objective over symmetric positive semidefinite matrix X

. o a2
‘1%1:21{1} F(X)=|AX)—yl3

X eR™™ y€R™ linear A:R"*" s Rm A(X); = (4;, X), A € R™*"
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Main Results: Conjecture

Conjecture. For anv full rank X, ;. if X = lim,, 0 X (X, exists and is a global optima for (1) with
A(X) =y, then X € argminy,, || X||, s.t. A(X) =y

where (1) refers to the least square objective over X in a previous slide,

where limn ensures that the initial point gets close to the origin,
o —¥*

where X..(aXi.i) is the limit point and is defined as i~ X,

for the factorized gradient flow Xy _ —A*(r)) X, — X, A%(ry) initialized at

lf

Xo = Xinit , residuals at time t r = A(X,) —y , A* is the adjoint of A A" :R™ — R"*"




Some Details

* Factorized objective is non-convex optimization problem

* Analysis uses gradient flow instead of gradient descent
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* Factorized gradient flow equation:

* Regular gradient flow equation: 4% _ .
dt !




Main Results: Supporting Evidence

* Simulation of matrix reconstruction problem

* Theoretical analysis

* Empirical results of matrix completion problem




T
Simulation of Matrix Reconstruction

* Pick X* >0, generate m <n? random measurement matrices and
set y = A(X™)
* Chose three different 50 x 50 X*

* Run gradient descent on U until convergence
 Different step sizes, initialization

* Measure reconstruction error || X — X*||r
e Across different values of d



Simulation Results: Matrix Reconstruction
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Figure 1: Reconstruction error of the solutions for the planted 50 x 50 matrix reconstruction problem. In (a) X* is of rank r = 2 and
m = 3nr, in (b) X* has a spectrum decaying as O(1/k"®) normalized to have || X*||. = /7| X" g forr =2 and m = 3nr, and
in (¢) we look at a non-reconstructable setting where the number of measurements m = nr /4 is much smaller than the requirement to
reconstruct a rank r = 2 matrix. The plots compare the reconstruction error of gradient descent on UV for different choices initialization
Up and step size 7, including fixed step-size and exact line search clipped for stability (7). Additonally, the orange dashed reference
line represents the performance of X y4 — a rank unconstrained global optima obtained by projected gradient descent on X space for (1),
and ‘SVD-Initialization” is an example of an alternate rank d global optima, where initialization Uy, is picked based on SVD of X
and gradient descent with small stepsize is run on factor space. The results are averaged across 3 random initialization and (nearly zero)

errorbars indicate the standard deviation.



Simulated Results: Matrix Reconstruction
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Figure 2: Nuclear norm of the solutions from Figure 1. In addition to the reference of X 4 from Figure 1, the magenta dashed line
(almost overlapped by the plot of ||U||z = 1074, 5 = 1073) is added as a reference for the (rank unconstrained) minimum nuclear
norm global optima. The error bars indicate the standard deviation across 3 random initializations. We have dropped the plot for

Ul = 1,17 = 10~ to reduce clutter.
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Summary of Matrix Reconstruction Results

* Minimizing to the factorized objective performs better generally
* Except in the case where reconstruction is impossible

 The solution with the lowest reconstruction error comes from
initializing close to the origin and taking very small fixed step sizes

* There is some evidence that gradient descent on the factorized
objective biases us towards minimum nuclear norm solution



Theoretical Results

* TWO warmup cases

* gradient descent on original convex objective: zero-error solution minimizes
the Frobenius norm

* proved informally that their main conjecture holds for m=1

* Case where A4; commute
* Formal proof of their main conjecture

e Case where A; do not commute
e Solution is no longer simple and is a “time ordered exponential”



Theoretical Analysis: A; commute

* Goal: show that a minimum nuclear norm solution with zero training
error satisfies Karush-Kuhn-Tucker (KKT) conditions where div € B™

such that A(x) =y X =0 A*(v) = T (I — A*(v))X =0

* The solution to %t _ _4<)x, - x,4%(r,) iS

t

-
X =exp(A™(s)) Xgexp(A™(s;)) where s = — [ redt
J0

« A, commute mean that they have at least one shared eigenbasis

Uly.+ .3 Un,



Theoretical Analysis: A; commute

* For any rv., X..(of) and X are both diagonalizable by v1;...,Un,
This means that A, (X..(al)) converges to A (X).

* Introduce 5= —loga and v(3) = s..(3)/5. Show that A(A%(v(5))) < 1
as /7 goes to infinity

* Enough to satisfy ~ lim A*(v(8)) < 1 lim A* (v(8))X = X

A—oc A—roc




Theoretical Analysis: A; commute

* Proof does not rely on any particular form of the residuals

* Proof relies on showing that gradient flow stays within the manifold

M={X =exp(A°(s)) Ximmexp(A“(s)) | s € B}




Theoretical Analysis: A; do not commute

* The solution to the gradient flow equation is

1 tfe
Xy = \!il:hl] ( 1_[ {:K;:(—rﬂ‘(.;-rfj}) X (H {33‘111‘[—{»4‘(?'.—;}])

T=t /¢ =1

* A “time-ordered exponential” where the order of multiplication
matters.

* Hard to characterize a manifold that the solution stays within without
additional restrictions on the form of the residuals



Empirical Results: Matrix Completion

e Simulated data sampled from different probability distribution
e Gaussian, uniform and power-law
* Again, the same 3 planted X*
 Compared the nuclear norm of solutions from different methods

e Used data from Movielens
* About 100,000 ratings from about 950 users and 1700 movies.



Simulated Results: Matrix Completion

. QDE approx. Time ordered exp, Gradient descent
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(a) Low rank X * (b) Low nuclear norm X (c) Low rank X* m =~

(1) Gaussian random measurements. We report the nuclear norm of the gradient flow solutions from three different approximations to (3)

numerical ODE solver (QDE approx. ), ime ordered exponential specified in (12) (Time ordered exp.) and standard gradient descent
with small step size (Gradient descent). The nuclear norm of the solution from gradient descent on X space - X4 and the minimum
nuclear norm global minima are provided as references. In (a) X* is rank v and m = 3nr, in (b) X* has a decaying spectrum with
|X* ||« = /7||X*||F and m = 3nr, and in () X* is rank r with m = nr/4, wheren = 50, r = 2.




Simulated Results: Matrix Completion
= e

(a) Low rank X ° (b) Low nuclear norm X' * (c) Low rank X*,m =2

(11} Uniform matrix completion: ¥i, A; measures a uniform random entry of X*. Details on X, number of measurements, and the
legends follow Figure3-(i).

CEET

(a) Low rank X * (b) Low nuclear norm X' * (c) Low rank X*,m =2

(111) Power law matrix completion: ¥i. A; measures a random entry of X chosen according to a power law distribution. Details on X,
number of measurements, and the legends follow Figure3-(1).




Non-Simulated Results: Matrix Completion

. Gradient descent
argmin y oy, [|[ X/ | p=10-3.5 = 102 Agd
Test Error (0.2880 0.2631 1.000
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{iv) Benchmark movie recommendation dataset — Movielens 100k. The dataset contains ~ 100k ratings from n, = 943 users on
na = 1682 movies. In this problem, gradient updates are performed on the asymmetric matrix factorization space X = UV T with
dimension d = min (n1, nz). The training data is completely fit to have < 10~ error. Test error is computed on a held out data of 10
ratings per user. Here we are not interested in the recommendation performance (test error) itself but on observing the bias of gradient flow
with imitialization close to zero to return a low nuclear norm solution — the test error is provided merely to demonstrate the effectiveness

of such a bias in this application. Also, due to the scale of the problem, we only report a coarse approximation of the gradient low 3 from
gradient descent with ||Uy|| 7 = 1073, 5 = 1072,




Ssummary

* Paper argues that there is implicit regularization in gradient descent
over matrix factorization

 Implicit regularization/ bias is towards a minimum nuclear norm
solution

* Hard to prove theoretically for the general case of matrix factorization

* Newer paper “Implicit Regularization in Deep Matrix Factorization”.
(Arora et al). https://arxiv.org/pdf/1905.13655.pdf
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