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Previously on MLRG

Overparametrization and expressivity

Aaron Bounds for perceptrons

Jason Neural networks can fitting random noise

Stochasticity and geometry of minima

Amir SGD finds shallow minima

Adam Sharp or flat is not the main story

Norms, Geometry and Capacity

Will Exploring generalization with capacity measures

Cathy Geometry of optimization and regularization: path norm

Implicit regularization

Betty Gradient flow for matrix factorization

Fred Gradient descent for logistic regression
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Implicit regularization

Under-parametrized −→ find the global minimum

optimization: speed
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generalization

dependent on initialization
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CD (w0 = 0)

GD (w0 = 0)
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Implicit regularization

solution space is infinite

can have 0 train error and ∞ test error

given model

choice of optimizer ⇔ choice of solution

Why deep learning boosting work? (≈ 2000s)

given logistic regression

gradient descent ⇔ ?
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Logistic regression

Separating planes Max Margin Confidence Divergence of w

w

‖w‖
: separating plane ‖w‖: confidence

7/18



Main results

Gradient descent on separable logistic regression

weights diverge ‖w‖

normalized weights converge
w

‖w‖

converges very slowly to the max margin

regardless of the starting point
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Main results

ŵ maximum margin/min ‖·‖2 solution

wt gradient descent iterates

wt = ŵ log(t) + ρ(t) and ρ(t) ≤ C

converges to the max margin: lim
t→∞

wt

‖wt‖
=

ŵ

‖ŵ‖

converges slowly:

∥∥∥∥ wt

‖wt‖
− ŵ

‖ŵ‖

∥∥∥∥ = Õ

(
1

log t

)

simple case deep learning? connection to SVM
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‖ŵ‖

converges slowly:

∥∥∥∥ wt

‖wt‖
− ŵ
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Main results toy data

‖wt‖

O(log t)

L(wt)

O(1/t)

∥∥∥ wt

‖wt‖ −
ŵ

‖ŵ‖

∥∥∥
Õ(1/ log t)
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Main results Resnet CIFAR10

L2 norm, last layer loss classification error

loss ↗ but error ↘ bad probabilities, good separation

Train longer, generalize better: closing the generalization gap in large batch training

Hoffer, Hubara, Soudry – NeurIPS 2017

slow convergence to max margin keep improving by training longer
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Main results optimizer choice

The Marginal Value of Adaptive Gradient Methods in Machine Learning

Wilson, Roelofs, Stern, Srebro and Recht – NeurIPS 2017

Adam GD
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Proof idea

very high level

• simplify the problem

• connection to support vectors

• converging sequence
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Proof idea simplification

Logistic loss log p( |x ,w) log(1 + exp(−w>x))

Exponential loss exp(−w>x)

L(w) =
∑
n

exp(−w>xn) ∇L(w) =
∑
n

exp(−w>xn)xn
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Proof idea support vectors

exponential loss

∇L(w) =
∑
n

exp(−w>xn)xn

max margin = sum of support vectors

ŵ =
∑
i

αixi

smallest |ŵ>xn|︸ ︷︷ ︸
support vector

other |ŵ>xn|︸ ︷︷ ︸
not a support
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Proof idea main insight

ŵ =
∑
i

αixi combination of support vectors

∇L(wt) =
∑
n

exp(−w>
t xn)xn

=
∑
i

exp(−w>
t xi )xi︸ ︷︷ ︸

data close to the boundary

+
∑
j

exp(−w>
t xj)xj︸ ︷︷ ︸

the rest
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Summary

gradient descent −→ max margin

very slowly ⇒ train longer

choice of optimizer ⇔ solution

connection to SVM

Next week:

meaning of minimum norm solution and kernels methods with Joey
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