MLRG – Why deep learning works?

The case of separable binary classification with linear models

Fred

The Implicit Bias of Gradient Descent on Separable Data Soudry, Hoffer, Shpigel Nacson, Gunasekar, Srebro

Previously on MLRG

Overparametrization and expressivity

- Aaron Bounds for perceptrons
- Jason Neural networks can fitting random noise

Stochasticity and geometry of minima

- Amir SGD finds shallow minima
- Adam Sharp or flat is not the main story

Norms, Geometry and Capacity

- Will Exploring generalization with capacity measures
- Cathy Geometry of optimization and regularization: path norm

- Betty Gradient flow for matrix factorization
- Fred Gradient descent for logistic regression

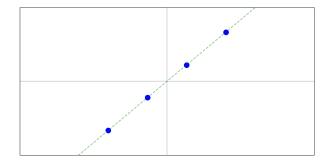
Under-parametrized	\longrightarrow	find the global minimum
--------------------	-------------------	--------------------------------

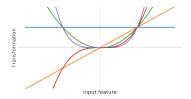
Over-parametrized

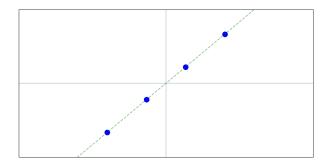
 \longrightarrow

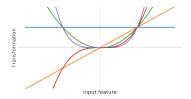
find a global minimum

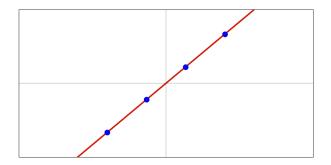
Under-parametrized	\longrightarrow	find the global minimum
optimization:	speed	
Over-parametrized	\longrightarrow	find a global minimum
optimization:	speed generalization dependent on initialization	

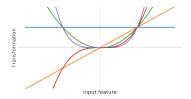


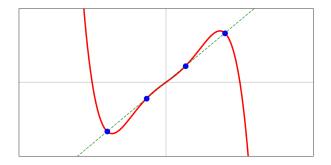


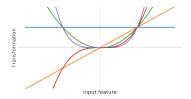


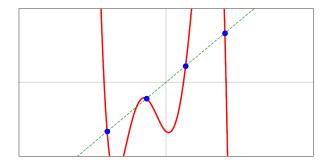


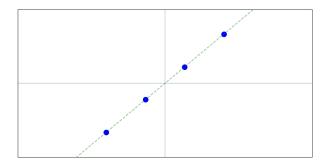


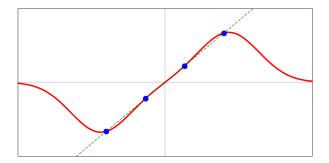


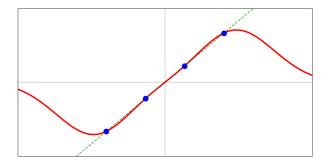


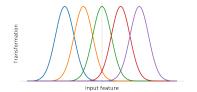


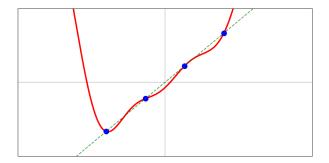


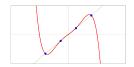


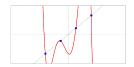


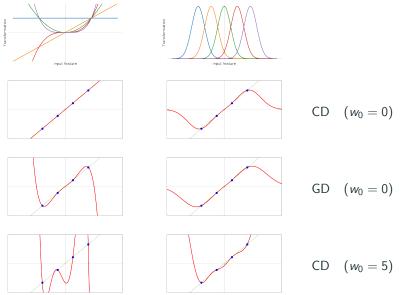






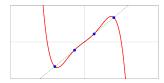


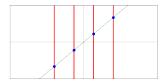




solution space is infinite

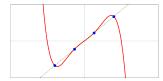
can have 0 train error and ∞ test error

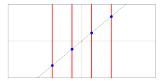




solution space is infinite

can have 0 train error and ∞ test error

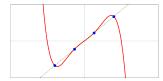


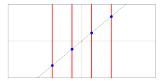


 $\label{eq:given model} \ensuremath{\mathsf{given model}}\xspace$ choice of optimizer \Leftrightarrow choice of solution

solution space is infinite

can have 0 train error and ∞ test error



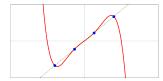


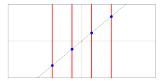
 $\label{eq:given model} \ensuremath{\mathsf{given model}}\xspace$ choice of optimizer \Leftrightarrow choice of solution

Why deep learning boosting work? (\approx 2000s)

solution space is infinite

can have 0 train error and ∞ test error

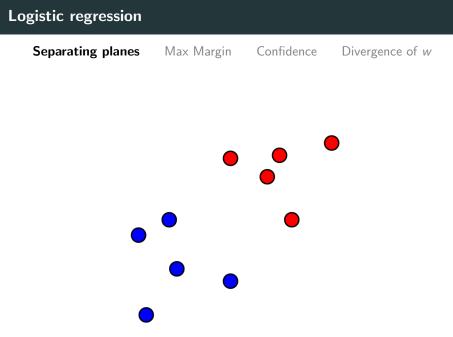


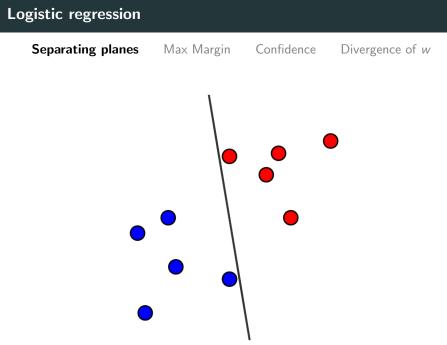


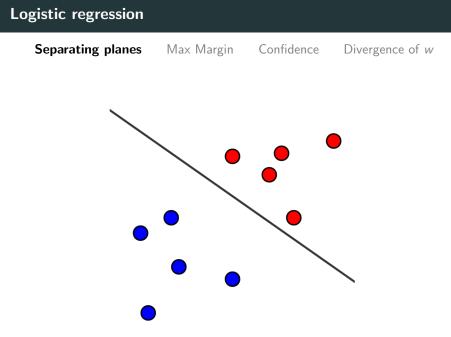
 $\label{eq:given model} \ensuremath{\mathsf{given model}}\xspace$ choice of optimizer \Leftrightarrow choice of solution

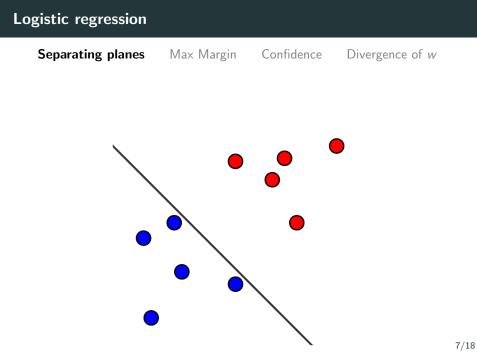
Why deep learning boosting work? (\approx 2000s)

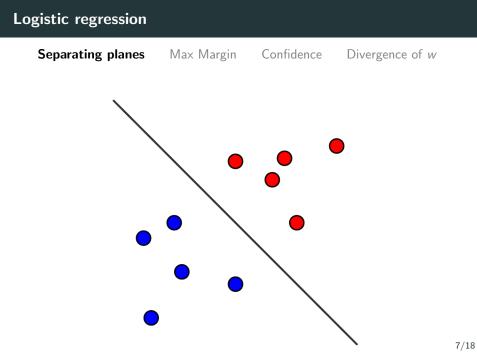
given logistic regression gradient descent \Leftrightarrow ?

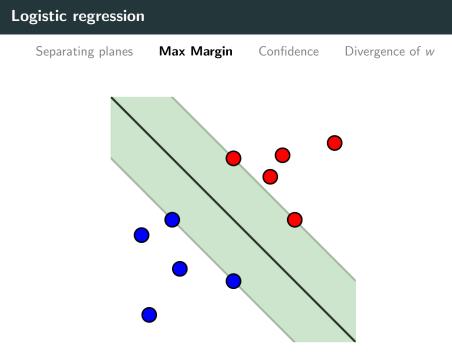


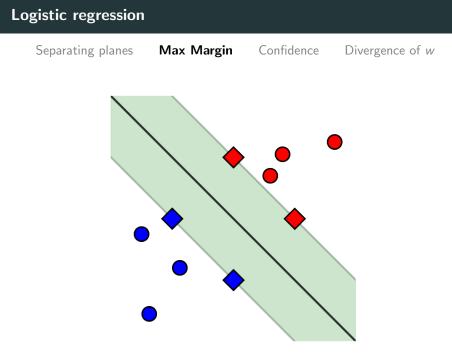




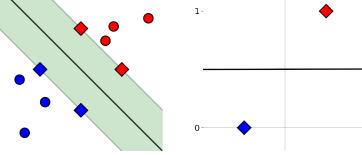








Separating planes Max Margin **Confidence** Divergence of *w*

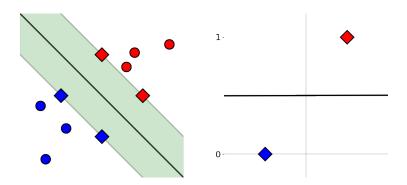


Separating planes

Max Margin

Confidence

$$p(\bullet|x) = \sigma(w^{\top}x) = \frac{1}{1 + \exp(-w^{\top}x)}$$

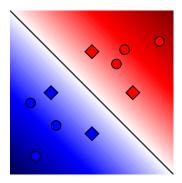


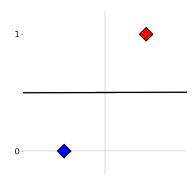
Separating planes

Max Margin

Confidence

$$p(\bullet|x) = \sigma(w^{\top}x) = \frac{1}{1 + \exp(-w^{\top}x)}$$



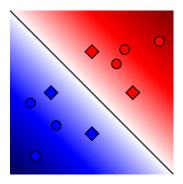


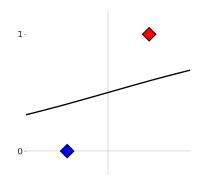
Separating planes

Max Margin

Confidence

$$p(\bullet|x) = \sigma(w^{\top}x) = \frac{1}{1 + \exp(-w^{\top}x)}$$



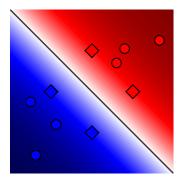


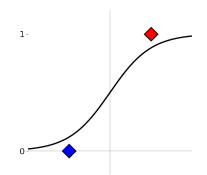
Separating planes

Max Margin

Confidence

$$p(\bullet|x) = \sigma(w^{\top}x) = \frac{1}{1 + \exp(-w^{\top}x)}$$



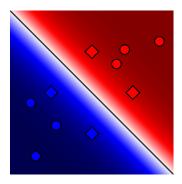


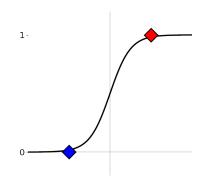
Separating planes

Max Margin

Confidence

$$p(\bullet|x) = \sigma(w^{\top}x) = \frac{1}{1 + \exp(-w^{\top}x)}$$

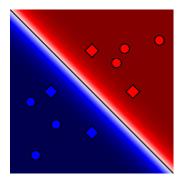


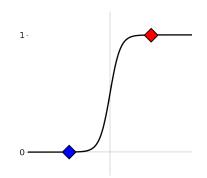


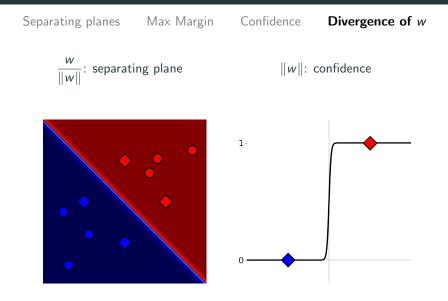
Separating planes Max Margin

Confidence

$$p(\bullet|x) = \sigma(w^{\top}x) = \frac{1}{1 + \exp(-w^{\top}x)}$$

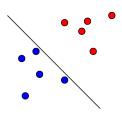


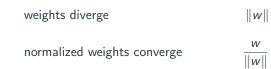




Main results

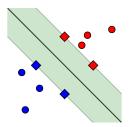
Gradient descent on separable logistic regression





Main results

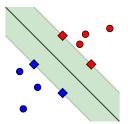
Gradient descent on separable logistic regression



weights diverge ||w||normalized weights converge $\frac{w}{||w||}$ converges **very slowly** to the max margin

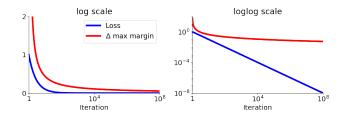
regardless of the starting point

Gradient descent on separable logistic regression



weights diverge ||w||normalized weights converge $\frac{w}{||w||}$

converges very slowly to the max margin regardless of the starting point



$$\hat{w}$$
 maximum margin/min $\|\cdot\|_2$ solution
 w_t gradient descent iterates

$$w_t = \hat{w} \log(t) +
ho(t)$$
 and $ho(t) \leq C$

$$\hat{w}$$
 maximum margin/min $\|\cdot\|_2$ solution
 w_t gradient descent iterates

$$w_t = \hat{w} \log(t) +
ho(t)$$
 and $ho(t) \leq C$

converges to the max margin:

$$\lim_{t \to \infty} \frac{w_t}{\|w_t\|} = \frac{\hat{w}}{\|\hat{w}\|}$$

$$\hat{w}$$
 maximum margin/min $\|\cdot\|_2$ solution
 w_t gradient descent iterates

$$w_t = \hat{w} \log(t) +
ho(t)$$
 and $ho(t) \leq C$

converges to the max margin: $\lim_{t \to \infty} \frac{w_t}{\|w_t\|} = \frac{\hat{w}}{\|\hat{w}\|}$

converges slowly:

$$\left\|\frac{w_t}{\|w_t\|} - \frac{\hat{w}}{\|\hat{w}\|}\right\| = \tilde{O}\left(\frac{1}{\log t}\right)$$

$$\hat{w}$$
 maximum margin/min $\|\cdot\|_2$ solution
 w_t gradient descent iterates

$$w_t = \hat{w} \log(t) +
ho(t)$$
 and $ho(t) \leq C$

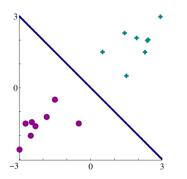
 $\lim_{t \to \infty} \frac{w_t}{\|w_t\|} = \frac{\hat{w}}{\|\hat{w}\|}$ converges to the max margin:

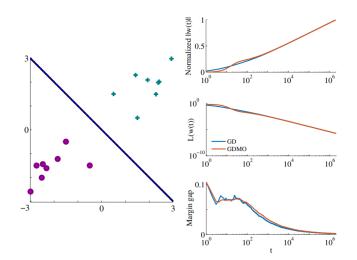
converges slowly:

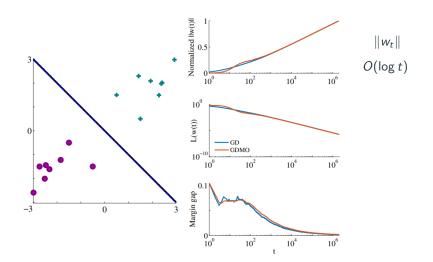
$$\left\|\frac{w_t}{\|w_t\|} - \frac{\hat{w}}{\|\hat{w}\|}\right\| = \tilde{O}\left(\frac{1}{\log t}\right)$$

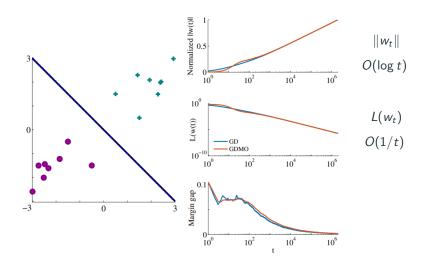
simple case

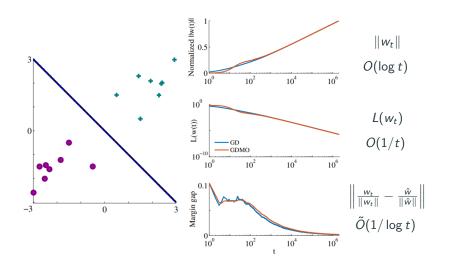
deep learning? connection to SVM



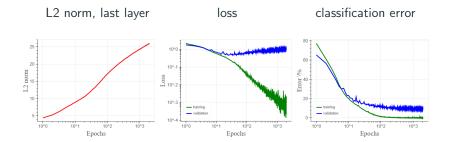




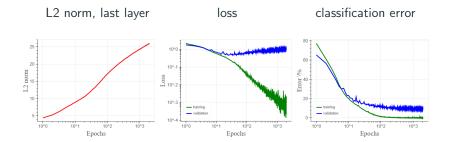




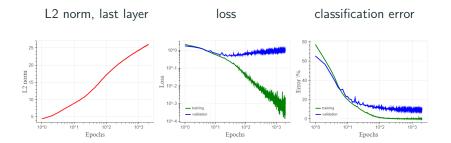
Resnet CIFAR10



Resnet CIFAR10



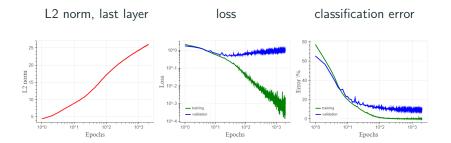
Resnet CIFAR10



loss \nearrow but error \searrow

bad probabilities, good separation

Resnet CIFAR10

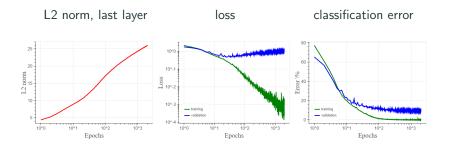


loss \nearrow but error \searrow

bad probabilities, good separation

Train longer, generalize better: closing the generalization gap in large batch training Hoffer, Hubara, Soudry – NeurIPS 2017

Resnet CIFAR10



loss \nearrow but error \searrow

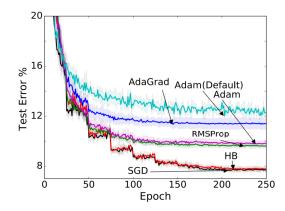
bad probabilities, good separation

Train longer, generalize better: closing the generalization gap in large batch training Hoffer, Hubara, Soudry – NeurIPS 2017

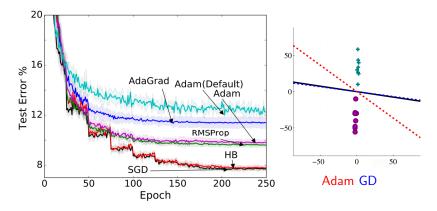
slow convergence to max margin

keep improving by training longer

The Marginal Value of Adaptive Gradient Methods in Machine Learning Wilson, Roelofs, Stern, Srebro and Recht – NeurIPS 2017



The Marginal Value of Adaptive Gradient Methods in Machine Learning Wilson, Roelofs, Stern, Srebro and Recht – NeurIPS 2017



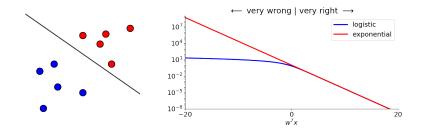
very high level

- simplify the problem
- connection to support vectors
- converging sequence

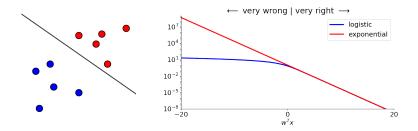
Logistic loss
$$\log p(\bullet|x, w) = \log(1 + \exp(-w^{\top}x))$$

Logistic loss
$$\log p(\bullet|x, w)$$
 $\log(1 + \exp(-w^{\top}x))$ Exponential loss $\exp(-w^{\top}x)$

Logistic loss $\log p(\bullet|x, w)$ $\log(1 + \exp(-w^{\top}x))$ Exponential loss $\exp(-w^{\top}x)$



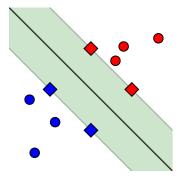
Logistic loss $\log p(\bullet|x, w)$ $\log(1 + \exp(-w^{\top}x))$ Exponential loss $\exp(-w^{\top}x)$



$$L(w) = \sum_{n} \exp(-w^{\top} x_n)$$
 $\nabla L(w) = \sum_{n} \exp(-w^{\top} x_n) x_n$

Proof idea

support vectors

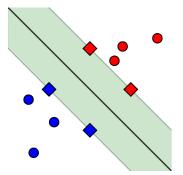


exponential loss

$$\nabla L(w) = \sum_{n} \exp(-w^{\top} x_{n}) x_{n}$$

Proof idea

support vectors



exponential loss

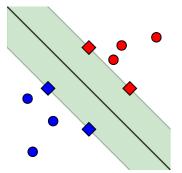
$$\nabla L(w) = \sum_{n} \exp(-w^{\top} x_{n}) x_{n}$$

 $\max margin = sum of support vectors$

$$\hat{w} = \sum_{i} \alpha_{i} x_{i}$$

Proof idea

support vectors



exponential loss

$$\nabla L(w) = \sum_{n} \exp(-w^{\top} x_{n}) x_{n}$$

 $\max \text{margin} = \text{sum of support vectors}$

$$\hat{w} = \sum_{i} \alpha_{i} x_{i}$$

smallest $|\hat{w}^{\top} x_n|$ support vector

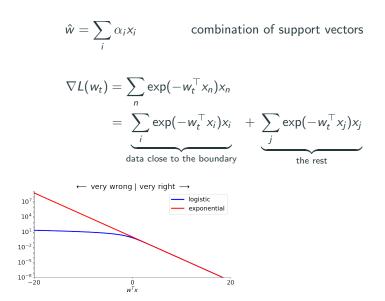
other $|\hat{w}^{\top} x_n|$ not a support

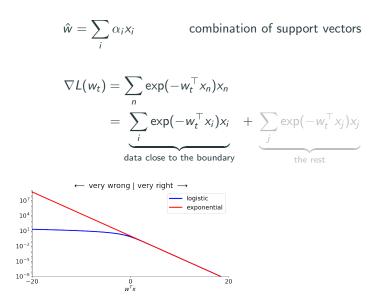
$$\hat{w} = \sum_{i} \alpha_{i} x_{i}$$
 combination of support vectors

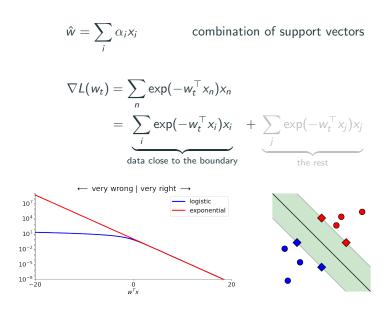
$$\nabla L(w_t) = \sum_n \exp(-w_t^\top x_n) x_n$$

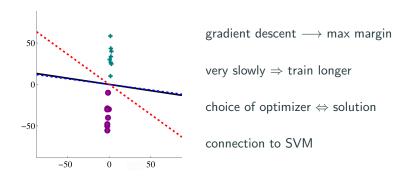
 $\hat{w} = \sum_{i} \alpha_{i} x_{i}$ combination of support vectors

$$\nabla L(w_t) = \sum_{n} \exp(-w_t^{\top} x_n) x_n$$
$$= \underbrace{\sum_{i} \exp(-w_t^{\top} x_i) x_i}_{\text{data close to the boundary}} + \underbrace{\sum_{j} \exp(-w_t^{\top} x_j) x_j}_{\text{the rest}}$$









Next week:

meaning of minimum norm solution and kernels methods with Joey

References, further reading

boosting	A decision-theoretic generalization of on-line learning and an application to boosting 1997 – Freund and Schapire
boosting as CD	Boosting the margin: a new explanation for the effectiveness of voting methods 1998 – Schapire, Freund, Bartlett and Lee
adaptive methods	The Marginal Value of Adaptive Gradient Methods in Machine Learning 2017 – Wilson, Roelofs, Stern, Srebro and Recht
slow conv.	Train longer, generalize better: closing the generalization gap in large batch training 2017 – Hoffer, Hubara, Soudry
	The implicit bias of gradient descent on separable data 2018 – Soudry, Hoffer, Shpigel Nacson, Gunasekar and Srebro
follow-up paper	Characterizing implicit bias in terms of optimization geometry 2018 – Gunasekar, Lee, Soudry and Srebro