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Bayesian network

Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes
represent random variables:

d
p(wh e 7'73!1) = H p($j|xpa(j))
j=1
Assumes that a variable is independent of previous non-parents given the
parents, that is, p(z;|z1,...,2a) = p(z;|Tpa;))

Captures how variables are conditionally dependent: If there are no any
arrows between the nodes then they are independent:

p(A, B) = p(A)p(B)
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Sampling from a DAG

Ancestral sampling:
» Sample z1 from p(z1)

» If 1 is a parent of z2, sample z2 from p(z2|z1) Otherwise, sample x2
from p(z2)

» Go through the subsequent j in order sampling x; from p(z;|Tpa(s))

Conditional Sampling:

» easy if condition on the first °
variables: fix these and run
ancestral sampling

» Hard if condition on the last ° °
variables: Conditioning on
descendent makes ancestors
dependent °



It’s hard to separate out causality from correlation
DAGs can be viewed as a causal process: the parents ”cause” the children
to take different values

The below equations are equivalent and the graphs have same conditional
independences, but the causalities are not the same. Graphs tells us
something useful that equations miss.
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There is observational data ("seeing”) and interventional data (”doing”)
Usually the DAG is designed for observational data, but that ignores the
possibility of unobserved variables, also without interventional data you
can’t distinguish the direction of causality.

Simplest external intervention: a single variable is forced to take some fixed
value (in a graph remove arrows entering that variable)



D-separation

d-separation is a criterion for deciding, from a causal graph, whether a set
A of variables is independent of another set B (given a third set C)

AL B|C

A and B are d-separated if for all paths P from A to B, at least one of the
following holds:

» P includes a ”chain” with an observed
middle node

» P includes a "fork” with an observed O q

parent node
» P includes a ”v-structure” or ”collider”

A and B are d-separated, give C, iff corresponding random variables are
conditionally independent:

p(A, B|C) = p(A|C)p(B|C)

If A and B are not d-separated they are d-connected



The Causal Calculus (do-calculus, Pearl’s Causal Calculus, Calculus of
Actions)

Shortly: Calculus to discuss causality in a formal language by Judea Pearl
A new operator, do(), marks an action or an intervention in the model. In
an algebraic model we replace certain functions with a constant X = x, and
in a graph we remove edges going into the target of intervention, but
preserve edges going out of the target.

The causal calculus uses Bayesian conditioning, p(y|x), where z is observed
variable, and causal conditioning, p(y|do(z)), where an action is taken to
force a specific value .

Goal is to generate probabilistic formulas for the effect of interventions in
terms of the observed probabilities.

Judea Pearl, Causality: Models, reasoning, and inference. Cambridge University
Press, 2000.



Notations
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Notation: a graph G, W, X, Y, Z are disjoint subsets of the variables. G
denotes the perturbed graph in which all edges pointing to X have been
deleted, and Gx denotes the perturbed graph in which all edges pointing
from X have been deleted. Z(W) denote the set of nodes in Z which are
not ancestors of W

Image: Judea Pearl



Pearl’s 3 rules

Pearl’s 3 rules

» Ignoring observations
p(yldo(z), 2z, w) = p(y|do(x), w) if (Y L Z|X, W)y
» Action/Observation exchange (the back-door criterion)
p(yldo(z), do(z), w) = p(y|do(z), z, w) if (Y L Z|X,W)e ,

» Ignoring actions/interventions

Pyldo(x), do(=), w) = p(yldo(a), w) if (¥ L Z|X,W)ey ,
Notation: a graph G, W, X, Y, Z are disjoint subsets of the variables. G
denotes the perturbed graph in which all edges pointing to X have been
deleted, and Gx denotes the perturbed graph in which all edges pointing
from X have been deleted. Z(W) denote the set of nodes in Z which are
not ancestors of W



Intuition behind the Pearl’s first rule

With condition (Y L Z|X, W)c we have
p(yldo(z), z,w) = p(y|do(x), w)

> Let’s start with a simple case where we assume that there are no W or
X. We get a condition (Y L Z)g, so Y is independent of Z, that is,
p(ylz) = p(y)

> In the second case assume we have passively observed W, but no
variable X: (Y L Z|W)q. Earlier we mentioned connection of
d-separation and conditionally independent, that is, p(y|z, w) = p(y|w)

» The third case assume we don’t know W, but we have X that’s value is
set by intervention: (Y L Z|X)g. By the same theorem, that is,

p(ylz, do(x)) = p(y|do(x))

Combining these gives the full rule.
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Example: Smoking and lung cancer

Randomized Controlled Trials (RCT)
» AKA Randomized Control Trial, Randomized clinical trial

» The participants in the trial are randomly allocated to either the group
receiving the treatment under investigation or to the control group

» The control group removes the confounding factor of the placebo effect
» Double-blind studies remove further confounding factors

» Sometimes impractical or impossible

We can try to use causal calculus to
analyze the probability that someone
would get cancer given that they are
smoking, without doing an actual
RCT:

p(yldo(z))

X

(smoking)

Note: We have no information about the hidden variable that could cause
both smoking and cancer



Example

We can’t try to apply rule 1 because there is no observations to ignore, we
would just have p(y|do(z)) = p(y|do(z)).

Try apply rule 2: We would have p(y|do(z)) = p(y|x), that is, the
intervention doesn’t matter. It’s condition is (Y I X)gy:

Y and X are not d-separated, because they
have a common ancestor.
—> Rule 2 can’t be applied

Try apply rule 3: We would have p(y|do(z)) = p(y), that is, an intervention
to force someone to smoke has no impact on whether they get cancer. It’s
condition is (Y L X)g:

Y and X are not d-separated, because we
have unblocked path between them.
—> Rule 3 can’t be applied



Example

New attempt:

p(y|do(x Zp y|z, do(x))p(z|do(x))
—Zp ylz, do(z))p(z|x)
—Zp y|do(z), do())p(z|x)
=Z;p(yd0(2))p(zw)

(rule 2: (Z L X)ay)

(rule 2: (Y L Z|X)ay ,)

(rule 3: (Y L X|Z2)c
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Example

We can use the same approach to the first term on the right hand side:
(y|do(z) Zp (y|z, do(z))p(z|do(z))

:ZP ylz, 2)p(x) (rule 2 + rule 3)

Finally we can combine these results:

p(yldo(z)) = 3" plyla’, 2)p(zl2)p(a’)

z,xz!

We can now compare p(y) and p(y|z). The
needed probabilities can be observed directly
from experimental data: What part of
smokers have lung cancer, how many of them
have tar in their lungs etc.

X

(smoking)




Example: end

» The analysis would have not worked if the graph had missed the tar
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variable, Z, because there is no general way to compute p(y|do(z))
from any observed distributions whenever the causal model includes
subgraph shown the figure below

Causal Calculus can be used to analyze causality in more complicated
(and more unethical) situations than RCT

Causal Calculus can also be used to test whether unobserved variables
are missed by removing all do terms from the relation

Not all models are acyclic. See for example Modeling Discrete
Interventional Data Using Directed Cyclic Graphical Models (UAI
2009) by Mark Schmidt and Kevin Murphy
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Thank you for listening. Questions?



