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General Overview (TLDR)

1. Classic statistical modeling assumptions don’t hold for high
capacity model regimes.

2. Not only do these high capacity models reach performance
comparable to the “sweet spot” found in classical machine
learning, but often achieves even better generalization
performance.

3. This performance is correlated with high capacity, interpolating
models, that yield low RKHS norm solutions in cases where we
arrive at an RKHS model class in the limit of the model class
capacity.

4. This phenomena seems to also hold for other classes of
parametric models with adjustable model capacity such as
random forests.
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Problem Statement

General Framework
Given a sample of training examples (x1, y1), ..., (xn, yn) from Rd × R,
we learn a predictor hn : Rd → R that is used to predict the label of a
new data point x.

Problems:
• Binary Classification
• Multi-Class
Classification

Model hn ∈ H :
• Kernel Machines
• Neural Networks
• Random Forests
• Decision Trees
• Boosting algorithms
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Empirical Risk Minimization

How do we Choose hn?
The model hn chosen from H is determined using empirical risk
minimization (ERM).

What is empirical risk minimization?
The predictor h is taken to be a function h ∈ H that minimizes the
empirical risk 1

n
∑n

i=1 l(h(xi, yi)) where l is a loss function such as
squared loss for regression, or zero one loss for classification.

What is a desirable h?
We hope that the model h not only minimizes the empirical risk, but
but the test risk as well.
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Classical Machine Learning Wisdom

Figure 1: Classically, we controlled the models capacity to ensure H was not
too large so as to lead to over fitting, and not too small to lead to under
fitting. 4



Inductive Bias

Definition: Inductive bias is the set of assumptions a learner uses to
predict results given inputs it has not yet encountered.

Classical Inductive Bias: Classical models carry an implicit inductive
bias towards simpler models that restricts the space of functions
that we can realize.

Yet increasingly, more complicated models out perform simpler
ones!
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The Double Decent Curve

Figure 2: While in classical regimes we see that using a inductive bias
towards simple models does allow us to reach a “sweet spot” with respect to
test risk, however in the interpolating regime, we can often do better by
further increasing the model capacity.
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Smooth Functions as an Inductive Bias

Why is this possible?
While the classic assumption of low capacity can improve
performance on test data, it is does not necessarily lead to the
correct inductive bias for the problem at hand.

What is the correct inductive bias?
Belkin et. al. posits that the appropriate inductive bias is connected
to the regularity or smoothness of a function under some function
space norm.
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Larger Function Classes and Smoothness

Figure 3: By considering larger function classes which contain more
candidate predictors, we are able, for whatever reason to find interpolating
functions that have smaller norms and are thus, smoother.
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The Reproducing Kernal Hilbert Space (RKHS)

What is RKHS?
The RKHS is a set of functions that satisfy specific properties when
evaluated as inner products with kernels that are also from the RKHS.

What is a low norm RKHS solution?
A function drawn from the RKHS that when evaluated as an inner
product with itself has a small magnitude.

Why do we want to use this metric?
Low RKHS norm solutions represent solutions considered over a
class of functions that are as “simple” as possible. This as we will see
is a useful inductive bias when we are already complex enough to
interpolate.

Why is this confusing?
Because it represents a norm over function spaces instead of vector
spaces, so our usual notion of closeness doesn’t quite work.
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Data-set Information
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Random Fourier Features (RFF)

The RFF model family HN with N complex valued parameters consists
of functions h : Rd → C of the form:

h(x) =
N∑
k=1

akϕ(x, vk) where ϕ(x, v) := e
√
−1⟨v,x⟩ (1)

Where the vectors v are sampled from a standard multivariate
normal distribution.

Note: As N→ ∞, the function class becomes closer and closer to
approximation to the RKHS (H∞)
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RFF Experiment Setup

1. Given data (x1, y1), ..., (xN, yN) from Rd × R, they find a predictor
hn,N ∈ HN that minimizes MSE over all functions h ∈ HN.

2. When the mimizer is not unique (as is the case for the
interpolation regime), they use the minimizer who’s coefficients
have the lowest l2 norm.

3. These minimizers are can be solved for directly.

Note: This norm is used as a surrogate for H∞, which for general
functions is difficult to compute.
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RFF Results: Part 1

Figure 4: Dual decent curves for the RFF model on the CIFAR and
20Newsgroup data sets.
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RFF Results: Part 2

Figure 5: Dual decent curves for the RFF model on the TIMIT and SVHN data
sets.
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RFF Results: Part 3

Figure 6: Dual decent curves for the RFF model on the MNIST data set.
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Random Relu Features (RRF)

The RFF model family HN with N real valued parameters consists of
functions h : Rd → R of the form:

h(x) =
N∑
k=1

akϕ(x, vk) where ϕ(x, v) := min(0, ⟨v, x⟩) (2)

Where the vectors v are sampled from a uniform distribution over
the surface of the unit sphere in Rd.

Note: Again, as N→ ∞, the function class becomes closer and closer
to approximation to the RKHS (H∞)
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RRF Results

Figure 7: Dual decent curves for RRF model class on MNIST and SVHN.
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Fully Connected Neural Networks

1. To alleviate sensitivity to
initial conditions, they use a
weight re-use scheme for the
under parameterized regime,
where parameters used for
training smaller networks are
used in initialization of
progressively larger networks.

2. For over parameterized they
use standard initialization.
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Single Layer Network Results: Part 2

Figure 8: (a),(b) fully connected single layer neural network dual decent
curves with weight reuse in non interpolating regime for CIFAR and SVHN. (c)
Fully connected single layer neural network dual decent curves with no
weight reuse in non interpolating regime for MNIST.
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Bagging and Boosting
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Experiment Setup

Random Forests (RF)
1. Model capacity is controlled
by number of trees averaged,
as well as the depth of each
tree.

2. In the non-interpolating
regime they increase both, in
the interpolating regime they
increase the averaging.

L2 Boosting
1. Constrain Each tree to have a
small number of leaves (≤ 10)

2. The metric for capacity is the
number of consecutive trees
used in the boosting
algorithm

3. They use low shrinkage to
speed up interpolation

4. They then average runs over
multiple runs of these
boosted models to further
increase capacity after
interpolation.
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Results: RF MNIST
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Results: RF (all datasets)
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Results: L2 Boosting
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Historical Absence

Why was this knowledge historically overlooked?

1. observing the double decent curve requires a parametric family
of function spaces with elements that can achieve arbitrary
complexity.

2. In non-parametric settings regularization is generally employed,
and can limit the model capacity.

3. The computational advantage for kernel methods only holds in
the non-interpolating regime.

4. The peak that is given in the dual decent curves is easy to miss
in the multi-layer nueral networks case, as it can effectively be
“missed” do to a higher starting model capacity.

5. In other cases, tricks like drop-out and early stopping can
change the behavior of these models, indicating that the
training methodology is just as important as the model itself
(high capacity and low norm).
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Small Norm Solutions and Optimization Considerations

A few closing comments:

1. Both the RFF and the RRF converge to the minimum functional
norm solution in the RKHS.

2. This solution maximizes smoothness, subject to interpolation
constraints.

3. For more general networks, it is still not clear that we are
converging to a similar solution, however some work has been
done showing that a similar inductive bias is present [5].

4. While an analysis similar to (1) isn’t cited, its clear that averaging
in RF and Boosting algorithms produces smoother classifiers as
well, which also empirically perform better.
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Approximation Theorem

Figure 9: The following theorem gives bounds on the error of approximating
a function in the RKHS h∗ with any other interpolating function h also found
in the RKHS.
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