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Newton method

Takes steps proportional to the inverse of eigenvalues.

Steps are in the opposite direction if an eigenvalue is 

negative!

Attracted to saddle points!



Optimization Algorithms around Saddle Point

http://imgur.com/a/Hqolp
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Where are we headed?

Deep networks probably have exponentially (in 

dimension) many saddle points with high errors!
Statistical Physics (spin-glass)

Random Matrix Theory

Previous theoretical work on neural networks.

We probably don’t have to worry about bad local 

minima in large networks.
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Random Matrix Theory
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Random Matrix Theory

In large Gaussian random matrices, the probability of 

an eigenvalue to be positive or negative is ½.

The Hessian at a random point on a spin-glass model 

with Gaussian edges is a Gaussian random matrix.



Y. Dauphin, … , and Y. Bengio, “Identifying and attacking the saddle point 

problem in high-dimensional non-convex optimization” NIPS, 2014.

Existence of saddle points in deep networks is 

empirically shown.



Y. Dauphin, … , and Y. Bengio, “Identifying and attacking the saddle point 

problem in high-dimensional non-convex optimization” NIPS, 2014.

Existence of saddle points in deep networks is 

empirically shown.

(re)introduce a saddle-free Newton method.



Y. Dauphin, … , and Y. Bengio, “Identifying and attacking the saddle point 

problem in high-dimensional non-convex optimization” NIPS, 2014.

Existence of saddle points in deep networks is 

empirically shown.

(re)introduce a saddle-free Newton method.

Compare on optimization of MLP, RNN, Deep 

autoencoders.
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Existence of saddle points in deep networks.

● : Fraction of the negative eigenvalues of the Hessian at the critical point.

● : Error at the critical point.

In Hamiltonian of a Gaussian Spin-Glass model there’s 

a positive correlation between these two measure.

Is it the same for neural networks?
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Y. Dauphin, … , and Y. Bengio, “Identifying and attacking the saddle point 

problem in high-dimensional non-convex optimization” NIPS, 2014.

(re)introduce a saddle-free Newton method.

● A corrected Newton method where steps are proportional to 

● First to justify this heuristic? (mathematically derived)

● In practice optimize in a lower-dimensional Krylov subspace.
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Y. Dauphin, … , and Y. Bengio, “Identifying and attacking the saddle point 

problem in high-dimensional non-convex optimization” NIPS, 2014.

Conclusion

If deep networks are similar to spin-glass models 

we will need a better plan to optimize.

A justifiable setting from which a saddle-free 

Newton method could be derived.
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“The Loss Surfaces of Multilayer Networks,” JMLR, 2015.

Make a connection between deep networks with 

ReLU and spherical spin-glass models.
Assuming (i) variable independence (ii) redundancy in 

network parametrization (iii) uniformity.

Using absolute value loss and hinge loss.

In large networks we probably don’t have to worry 

about bad local minima.

Finding a global minimum on the training set is 

not useful.
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“The Loss Surfaces of Multilayer Networks,” JMLR, 2015.
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Following the same path from the last year.

In previous work used a low-dimensional Krylov subspace.

If limit ourselves to diagonal preconditioners can we get a 

similar conditioning as inverse Hessian with absolute 

eigenvalues?

Equilibrated Stochastic Gradient Descent!

AdaDelta, AdaGrad, RMSProp.

Works as well or better than RMSProp.
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Conclusion

The first group argue saddle points are an 

important problem in deep networks.

The second group show as the network grows you 

probably do not need to worry about bad local 

minima. If you get past the saddle points, and 

settle for a lower index critical point, you’re 

probably in a good local minima.
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Conclusion

The first group introduced an impractical saddle-

free Newton method with limited experiments on 

arguably small networks.

Later they took an adaptive approach (diagonal 

preconditioning) and introduced ESGD which 

behaves similarly to RMSProp, an approach that 

is apparently not well understood. 
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Conclusion

The second group made a direct connection to 

spin-glass models with unrealistic assumptions.
Input independent activation of ReLUs.

Independent inputs for each path on the network.

Working on ways to relax these assumptions?



Thank you!


