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Joint distributions

We want to represent a continuous joint probability
distribution p(x|θ).

Using the chain rule,

p(x1:V) = p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4 | x1, x2, x3) . . .p(xV | x1:V−1).

To be able to represent large joint distributions, we need to
make conditional independence assumptions.
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Conditional independence

Conditional independence:

X ⊥ Y | Z ⇐⇒ p(X, Y | Z) = p(X | Z)p(Y | Z)

One of the most common assumptions is the Markov
assumption xt+1 ⊥ x1:t−1 | xt.

Then the joint distribution can be written:

p(x1:V) = p(x1)
V∏

t=1
p(xt | xt−1)

Graphical models are a more powerful generalization.
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Graphical models

Graphical models allow for more complex dependence
assumptions.

Directed graphical models assume the property
xs ⊥ xpred(s) \ pa(s) | xpa(s), where pred(s) is the node’s
predecessors (which can be defined in a directed acyclic
graph) and pa(s) is the node’s parents.

x1 x2 x3

p(x1:3) = p(x1)p(x2 | x1)p(x3 | x2)
x2

x1

x3

p(x1:3) = p(x1)p(x2 | x1)p(x3 | x1)
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Undirected graphical models

Undirected graphical models have the global Markov property:
xs ⊥ x \(mb(s)∪{s}) | xmb(s), where mb(s) is the Markov blanket of
s, its neighbours in the graph

Some distributions can only be represented by directed
graphical models, some with only undirected

In pairwise Markov random fields, a potential ψij(xi, xj) is
associated with each edge (i, j) ∈ E , and the joint distribution
is

p(x) ∝
∏

(i,j)∈E
ψij(xi, xj).
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Gaussian Markov random fields

Gaussian Markov random fields are pairwise Markov random
fields with a Gaussian joint distribution.

The pairwise potentials are also Gaussian:

p(x) ∝ exp
(
− 1
2 (x− µ)TΣ−1(x− µ)

)

∝ exp

− 1
2x

TΣ−1x+ xT Σ−1µ︸ ︷︷ ︸
η


∝ exp

− 1
2

d∑
i=1

d∑
j=1

xixjΣ−1
ij +

d∑
i=1

xiηi



=


d∏
i=1

d∏
j=1

exp
(
− 1
2xixjΣ

−1
ij

)
︸ ︷︷ ︸

ψij(xi,xj)


 d∏

i=1

exp(xiηi)︸ ︷︷ ︸
ψi(xi)


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Motivation for non-Gaussian models

A multivariate Gaussian joint distribution is a significant
restriction.

We can get more flexibility using the nonparanormal
(nonparametric normal) distribution. Here we estimate a
transformation fj for each variable, and assume that the
transformed data is jointly Gaussian.

The nonparanormal distribution was introduced in 2009 by Liu,
Lafferty, and Wasserman [1]. To understand it we need to first
go over copulas.
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Copulas: introduction

Start with random vector (X1, X2, . . . , Xd). We only assume that
each variable Xi has a continuous CDF Fi(x) = P(Xi ≤ x).

Then consider the vector
U = (U1,U2, . . . ,Ud) = (F1(X1), F2(X2), . . . , Fd(Xd)). Notice that
we are “feeding back” each variable into its own CDF.

U has uniform marginals (each Ui is uniformly distributed on
[0, 1]). Why?
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U has uniform marginals: proof

Consider the CDF of Ui:

P(Ui ≤ u) = P(Fi(Xi) ≤ u)
= P(Xi ≤ F−1

i (u))
= Fi(F−1

i (u))
= u

This is the CDF of a uniform random variable on [0, 1]. Thus U
has uniform marginals.
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Copulas

Define the copula C of (X1, X2, . . . , Xd) as the joint CDF of U:

C(u1,u2, . . . ,ud) = P(U1 ≤ u1,U2 ≤ u2, . . . ,Ud ≤ ud)
= P(X1 ≤ F−1

1 (u1), X2 ≤ F−1
2 (u2), . . . , Xd ≤ F−1

d (ud))

Given any multivariate CDF H, we can see that

H(x1, x2, . . . , xd) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd)
= C(F1(x1), F2(x2), . . . , Fd(xd)).

In fact, any multivariate distribution (not only those with
continuous marginals) can be expressed in terms of its
marginals and copula!

This is Sklar’s Theorem, which also gives uniqueness results
for continuous marginals.

11



Copulas

Define the copula C of (X1, X2, . . . , Xd) as the joint CDF of U:

C(u1,u2, . . . ,ud) = P(U1 ≤ u1,U2 ≤ u2, . . . ,Ud ≤ ud)
= P(X1 ≤ F−1

1 (u1), X2 ≤ F−1
2 (u2), . . . , Xd ≤ F−1

d (ud))

Given any multivariate CDF H, we can see that

H(x1, x2, . . . , xd) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd)
= C(F1(x1), F2(x2), . . . , Fd(xd)).

In fact, any multivariate distribution (not only those with
continuous marginals) can be expressed in terms of its
marginals and copula!

This is Sklar’s Theorem, which also gives uniqueness results
for continuous marginals.

11



Copulas

Define the copula C of (X1, X2, . . . , Xd) as the joint CDF of U:

C(u1,u2, . . . ,ud) = P(U1 ≤ u1,U2 ≤ u2, . . . ,Ud ≤ ud)
= P(X1 ≤ F−1

1 (u1), X2 ≤ F−1
2 (u2), . . . , Xd ≤ F−1

d (ud))

Given any multivariate CDF H, we can see that

H(x1, x2, . . . , xd) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd)
= C(F1(x1), F2(x2), . . . , Fd(xd)).

In fact, any multivariate distribution (not only those with
continuous marginals) can be expressed in terms of its
marginals and copula!

This is Sklar’s Theorem, which also gives uniqueness results
for continuous marginals.

11



The nonparanormal distribution

A random vector (X1, X2, . . . , Xd) has a nonparanormal
distribution NPN(µ,Σ, {fj}dj=1) if there exists a set of functions
{fj}dj=1 such that (f1(X1), f2(X2), . . . , fd(Xd)) ∼ N (µ,Σ).

As a copula, with Φµ,Σ the CDF of a multivariate Gaussian
N (µ,Σ) and Φ the CDF of the standard normal,

F(x1, x2, . . . , xd) = Φµ,Σ

(
Φ−1(F1(x1)),Φ−1(F2(x2)), . . . ,Φ−1(Fd(xd))

)
The dependence information is encoded in the precision
matrix Ω = Σ−1: Xi ⊥ Xj | X\{i,j} ⇐⇒ Ωij = 0
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Example densities

Liu, Lafferty, and Wasserman [1]
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Estimating a nonparanormal from data

We want to learn the joint distribution and graph structure
from data.

Estimating the marginals {Fj}dj=1 gives us the transformations
{fj}dj=1, since

Fj(x) = P(Xj ≤ x) = P(fj(Xj) ≤ fj(x)) = Φ

( fj(x)− µj
σj

)
,

and thus
fj(x) = µj + σjΦ

−1(Fj(x)).

Given n data points X(1), X(2), . . . , X(n), Fj can be estimated using
the empirical CDF:

F̂j(t) =
1
n

n∑
i=1

I[X(i)j ≤ t]
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Estimating a nonparanormal from data: continued

The mean is estimated as the sample mean µn. See Liu et al.
[2] for estimators of the correlation matrix.

An ℓ1-regularized estimator for Ω, to encourage graph sparsity,
can be computed using the graphical lasso.

Consistency results for Ω with respect to the Frobenius norm
and the ℓ2 norm: if the data was generated from a
nonparanormal with precision matrix Ω, as n → ∞,
∥Ω̂− Ω∥ → 0.

Achieves the same rate of convergence as the Gaussian model.
The authors advocate it as a drop-in replacement.
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Notes

This is a semiparametric model: the parametric part is
estimating µ and Σ, the nonparametric part is estimating
{fj}dj=1.

For most recent details on implementation and convergence,
see Liu et al. [2].

The R package huge implements undirected graph estimation
with the nonparanormal distribution.
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