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Laplace Approximation
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● Aims to find a Gaussian approximation to a (intractable) continuous 
probability distribution

Posterior:                                               where            

Idea: Taylor series expansion around the mode of E(ᵠ)



Laplace Approximation
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Posterior is approximated by a Gaussian distribution

Laplace approximation to marginal likelihood



Laplace Approximation
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Motivation
● Important when it is difficult to compute the posterior distribution P(x | D) of 

the variables x given the data D (e.g: non-conjugacy for continuous variables, 
exponentially many hidden states for discrete variables)

● Main Idea: Approximate the posterior distribution p*(x) by a more tractable 
distribution q(x) chosen from a family of simple(r) distributions. q(x) is easy to 
integrate or has an analytic form. 

● Choose the q(x) which “best” approximates p*(x) => choose q(x) which 
maximizes some form of similarity with the true posterior 

● Turned the integration problem to an optimization problem ! 
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Variational Inference
● Judge the quality of approximation using (Reverse) KL divergence:

● This is hard to compute since calculating p*(x) requires knowledge of the 
normalization constant Z => use unnormalized posterior distribution 

● p~(x) = p*(x) Z
● Objective: Minimize 
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Variational Inference

Objective: Maximize L(q) i.e. the lower bound on the log likelihood of observing 
the data 
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Entropy Expected 
Energy

Helmholtz 
Free Energy

● q(x) needs to be zero when p*(x) is zero => Reverse KL divergence is zero 
forcing => q(x) will under-estimate the support of p*(x)



Mean Field assumption
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● Posterior is fully factorized => 

● Rewriting our objective function with this assumption:



Mean Field assumption
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Expectation wrt to all qi except jRewriting L(qj)

Update equation for qj

Do coordinate descent wrt each variable using the above update !



Variational Bayes
● Method to infer the parameters of a model. Use mean field assumption on the 

parameters:
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VB for Univariate Gaussian 
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Likelihood: 

Let                            Using conjugate prior to compare against true posterior :

Un-normalized posterior:



VB for Univariate Gaussian 

13

Mean Field approximation to posterior: 

Update equations:



VB for Univariate Gaussian 
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Update equations:



VB for Univariate Gaussian 
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Computing expectations:

Final updates:



VB for Univariate Gaussian 
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Calculate the objective function: 

Evaluate this function at each iteration. Terminate when its 
increments become small. 



VB for Univariate Gaussian 
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VB: Linear Regression
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Likelihood: 

Prior:

Mean Field assumption:

After solving the update equations:



Summary
Advantages:

● Reduces integration to an optimization problem
● Well defined termination criteria. Easy to debug. 
● Mean field assumption “automatically” picks the family of distributions
● Arguably a more principled approach than sampling

Disadvantages:

● Not consistent !
● Not as out-of-the-box as sampling 
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