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Laplace Approximation

e Aims to find a Gaussian approximation to a (intractable) continuous
probability distribution

Posterior:  p(0|D) = ; —E(0)  where E(Q) = —log p(@, D)

|dea: Taylor series expansion around the mode of E(0)
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Laplace Approximation
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Posterior is approximated by a Gaussian distribution
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Laplace approximation to marginal likelihood



Laplace Approximation
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Motivation

Important when it is difficult to compute the posterior distribution P(x | D) of
the variables x given the data D (e.g: non-conjugacy for continuous variables,
exponentially many hidden states for discrete variables)

Main Idea: Approximate the posterior distribution p*(x) by a more tractable
distribution q(x) chosen from a family of simple(r) distributions. q(x) is easy to
integrate or has an analytic form.

Choose the q(x) which “best” approximates p*(x) => choose q(x) which
maximizes some form of similarity with the true posterior

Turned the integration problem to an optimization problem !



Variational Inference

e Judge the quality of approximation using (Reverse) KL divergence:

KL (q|[p") Zq ) log

q(x)
p*(x)

e This is hard to compute since calculating p*(x) requires knowledge of the
normalization constant Z => use unnormalized posterior distribution

e p(x)=p*(x)Z

e Objective: Minimize

J(q@) = KL(q|Ip)




Variational Inference
L(q) = -J(g) = =KL (q|[p") +log Z < log Z = logp(D)

Objective: Maximize L(q) i.e. the lower bound on the log likelihood of observing

the data
J(q) = Eq [log q(x)] + Eq [—log p(x)] = —H (¢) + Eq [E(x)]
Helmholtz Entropy Expected

Free Energy Energy

e ((x) needs to be zero when p*(x) is zero => Reverse KL divergence is zero
forcing => q(x) will under-estimate the support of p*(x)



Mean Field assumption

e Posterior is fully factorized => H q:(x;)

e Rewriting our objective function with this assumptlon

ZH% Xi) {logp Zlog Gk (X ) }
ZZQ; (%) HQz oo {logp Zlogq;L (xk)

X—j ]

ZQJ XJ 10% fJ XJ ZQ; Xg 1OgQJ(X3) + const

_}



Mean Field assumption

log fi(x;) Z:l—[q2 x;)logp(x) = E_,, [logp(x)]
S /

Rewriting L(q;) Expectation wrt to all . except

L(q;) = —KL(g;] ;)
N pdate equation for q
log qd; (Xj) = E_g, Uog p(X)}/U

Do coordinate descent wrt each variable using the above update !
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Variational Bayes

e Method to infer the parameters of a model. Use mean field assumption on the
parameters:

p(0|D) ~ [[;, q(0)
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VB for Univariate Gaussian

Likelihood:

‘ 1 1
, 2 _ 2
N(zlp,0%) = (2702)3 GXD[—@(I‘ — )7

Let A= 1/02 | Using conjugate prior to compare against true posterior :
p(ps A) = N (plpo, (koA) ™) Ga(Mao, bo)

Un-normalized posterior:

logp(p,A) = logp(u, A, D) = logp(D|p, A) +log p(u|A) + log p(A)
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VB for Univariate Gaussian

Mean Field approximation to posterior: q(,u, )\) = iy (,u)q)\ ()\)

Update equations:

logq,(n) = Eg, [logp(D|p, \) + logp(p|N)]

qu(p) = N(plpn, k')

Kopo + NT

HN =

K0 N

9 ’{N:(K’O_FN)
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VB for Univariate Gaussian

Update equations:

loggr(A) = Eq, [logp(D|u, A) + log p(u[A) +log p(A)]
gx(A) = Ga(Aan, by),

N +1
aN = @O+T

N

1 2 2
by = b0+§EqM Ko(p — o) +;($i—u)
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VB for Univariate Gaussian

Computing expectations:

Eqw) 2l =
) [“2} —

Final updates:

_ koo + NT
UN = Ko+ N

anN

KN &= (ﬁ;o—i—N)b—
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VB for Univariate Gaussian

Calculate the objective function:

- [ fannetn

L{g) = 5 log — 4+ log'(ay) — an log by + const
KN

Evaluate this function at each iteration. Terminate when its
increments become small.
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VB for Univariate Gaussian
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VB: Linear Regression
Likelihood:

p(ylX,0) = N(Xw, A7)

Prior:

p(w, X a) = N(wl|0,(Aa)”'T)Ga(Nap, by)Ga(alag, bf)
Mean Field assumption:

g(w,a, A) = q(w, A)g(a)

After solving the update equations:

g(w,o,)) = N(wlwy, A1V y)Ga(A|ay, by )Galala%, bS)



Summary

Advantages:

Reduces integration to an optimization problem

Well defined termination criteria. Easy to debug.

Mean field assumption “automatically” picks the family of distributions
Arguably a more principled approach than sampling

Disadvantages:

e Not consistent!
e Not as out-of-the-box as sampling
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