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Conditional UGM

We know the value of one or more random variables
i.e., we have observations, P (x2, x3|x1) = P (x1,x2,x3)

P (x1)
.

We want to do conditional decoding/inference/sampling.
Examples from previous demos:

Demo 1 (Small UGM):
If Mark and Cathy get the question wrong, what is the
probability that Heather still gets the question right?

Demo 2 (Chain UGM):
What is the most likely path of a CS graduate’s career, given
that he is in academia 10 years after graduating? And what
do samples of his career look like?

Demo 3 (Tree UGM):
What happens to the rest of the water system if the source
node is in state 4? If we use a model with multiple sources
and observe that one of the nodes is in state 4, which source
is more likely to also be in an unsafe state?
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Undirected Graphical Models (UGMs)

We are focusing on pairwise UGMs with discrete states,

P (X) =

∏N
i=1 φi(xi)

∏
(i,j)∈E φi,j(xi, xj)

Z
,

where we’ve decomposed X into ‘parts’ xi ∈ {1, 2, . . . , S}.
We are considering exact methods for 3 tasks:

1 Decoding: Compute the optimal configuration,

max
X

P (X).

2 Inference: Compute partition function and marginals,

Z(X) =
∑
X′

P (X ′), P (Xi = s) =
∑

X′|Xi=s

P (X ′).

3 Sampling: Generate X ′ according to Gibbs distribution:

X ′ ∼ P (X).

With conditioning, think of reducing problem dimension.
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UGMs Closed Under Conditioning

UGMs are closed under conditioning.

If we condition on the values of some of the variables, then
the resulting distribution will still be a UGM.

Example: Consider a 4-node UGM with chain-structured
dependency 1-2-3-4, and we condition on {2, 3}.

The conditional probability of {1, 4} given {2, 3}, i.e.,
P (x1, x4|x2, x3) is a UGM defined on {1, 4}
The conditional UGM will be an induced subgraph, i.e., a
subset of nodes (unobserved nodes) of a graph together
with any edges whose endpoints are both in this subset.

Subgraph may have a simpler structure than original graph.
A ‘forest’ is a graph without loops, more general than a tree
(doesn’t need to be connected).

Tree inference applies, just apply it to each tree separately.
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Unconditional UGMs as Conditional UGMs

P (x1, x4|x2, x3)

=
P (x1, x2, x3, x4)

P (x2, x3)

4321

41

41

41

41

2 3

=
1
Z
φ1(x1)φ2(x2)φ3(x3)φ4(x4)φ1,2(x1, x2)φ2,3(x2, x3)φ3,4(x3, x4)∑

x′
1,x

′
4

1
Z
φ1(x′1)φ2(x2)φ3(x3)φ4(x′4)φ1,2(x′1, x2)φ2,3(x2, x3)φ3,4(x3, x′4)

=
1
Z
φ1(x1)φ2(x2)φ3(x3)φ4(x4)φ1,2(x1, x2)φ2,3(x2, x3)φ3,4(x3, x4)

1
Z
φ2(x2)φ3(x3)φ2,3(x2, x3)

∑
x′
1,x

′
4
φ1(x′1)φ4(x′4)φ1,2(x′1, x2)φ3,4(x3, x′4)

=
φ1(x1)φ4(x4)φ1,2(x1, x2)φ3,4(x3, x4)∑

x′
1,x

′
4
φ1(x′1)φ4(x′4)φ1,2(x′1, x2)φ3,4(x3, x′4)

=
φ̃1(x1)φ̃4(x4)∑

x′
1,x

′
4
φ̃1(x′1)φ̃4(x′4)

,

4321

41

41

41

41

2 3

where φ̃1(x1) = φ1(x1)φ1,2(x1, x2), and φ̃4(x4) = φ4(x4)φ1,4(x1, x4).

Absorb potentials coming from 1-2 edge and 3-4 edge.
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Unconditional UGMs as Conditional UGMs

Convert any unconditional UGM into a UGM representing
conditional probabilities by:

1 Removing observed nodes from the model.

2 Removing edges between observed nodes from the model.
3 For each edge between observed and regular node,

element-wise multiply the node potential of the regular
node by the relevant row or column of the edge potential,
and then remove the edge from the model.

... =
φ1(x1)φ4(x4)φ1,2(x1, x2)φ3,4(x3, x4)∑

x′
1,x

′
4
φ1(x′1)φ4(x

′
4)φ1,2(x

′
1, x2)φ3,4(x3, x

′
4)

=
φ̃1(x1)φ̃4(x4)∑

x′
1,x

′
4
φ̃1(x′1)φ̃4(x

′
4)

4 No terms left depending on observed nodes.

4321

41

41

41

41

2 3
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Example: Inference Cheating Students Scenario

Cathy Heather Mark Allison

Node Marginals
Student Right Wrong
Cathy 0.36 0.64
Heather 0.84 0.16
Mark 0.49 0.51
Allison 0.88 0.12
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Example: Inference Cheating Students Scenario

Assume Cathy and Mark get the question wrong.

Cathy Heather Mark Allison

Node Marginals
Student Right Wrong
Cathy 0 1
Heather 0.69 0.31
Mark 0 1
Allison 0.82 0.18
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Example: Inference Cheating Students Scenario

Assume Cathy, Mark AND Allison get the question wrong.

Cathy Heather Mark Allison

Node Marginals
Student Right Wrong
Cathy 0 1
Heather 0.69 0.31
Mark 0 1
Allison 0 1

Heather is ‘independent’ of Allison.
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Example: Decoding CS Grad Student Scenario

Assume someone is in academia 10 years post graduating.

Decoding: Want to know most likely 60 year path.

Careful: We remove the 10th node.

The conditional UGM is no longer a chain.
Now forms two independent chains, i.e., a ‘forest’.

Solution: 1 year of grad school, then enter academia.

This is unrealistic (assumes equal edge potentials).
Improve model with non-homogeneous edge potentials.
Add extra states: unlikely to finish grad school in 1 year.
In other words, decoding can often be misleading.
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Example: Inference CS Grad Student Scenario

Assume someone is in academia 10 years post graduating.

Inference: Want to know marginals for each state.

(3) Grad School, (6) Academia

11 / 25
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Example: Sampling CS Grad Student Scenario

Assume someone is in academia 10 years post graduating.

Sampling: Want to see samples of people with 10th year

in academia.

(3) Grad School, (6) Academia
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The Loop Crux

So far, we have considered acyclic models.

However, often our model may have loops.

Decoding/inference/sampling for general UGMs with loops

NP-hard.

We can exploit graph structure to yield polynomial-time

algorithm.
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Cutset Conditioning

We define a cutset as a set of nodes of a graph which, if “cut”,
i.e., removed, makes the conditional UGM a forest.

   

If a graph has a small cutset, then we can exactly

decode/infer/sample by using cutset conditioning.

As long as we condition on at least two nodes in the above

example, the loop will be broken in the conditional UGM.
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Cutset Conditioning for Decoding

General Idea: Find the optimal conditional decoding for all

possible values of the chosen node.

Find a set of variables (the cutset), such that when we

condition on the variables the conditional UGM is a forest.

Find the optimal decoding of the forest, for every possible

assignment to the cutset variables.

Compute the potential of the cutset variables combined

with the best decoding given the cutset, and return the one

with the highest potential.
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Cutset Conditioning for Decoding

1. Select a cutset.

2. Find optimal decoding for each value of cutset: {1, 2, 3}.
1 2 3

1− 3− 2− 2 2− 3− 1− 3 3− 1− 1− 1

3. Compute potentials and return one with highest potential.

2 3

13

Given that we can find the optimal decoding of a forest in
O(nNodes ∗ nStates2), the runtime for the cutset conditioning algorithm for
loop structures is O(nNodes ∗ nStates3), which is much faster than the
exponential cost of examining all states.

16 / 25



Cutset Conditioning for Decoding

1. Select a cutset.

2. Find optimal decoding for each value of cutset: {1, 2, 3}.
1 2 3

1− 3− 2− 2 2− 3− 1− 3 3− 1− 1− 1

3. Compute potentials and return one with highest potential.

2 3

13

Given that we can find the optimal decoding of a forest in
O(nNodes ∗ nStates2), the runtime for the cutset conditioning algorithm for
loop structures is O(nNodes ∗ nStates3), which is much faster than the
exponential cost of examining all states.

16 / 25



Cutset Conditioning for Decoding

1. Select a cutset.

2. Find optimal decoding for each value of cutset: {1, 2, 3}.
1 2 3

1− 3− 2− 2 2− 3− 1− 3 3− 1− 1− 1

3. Compute potentials and return one with highest potential.

2 3

13

Given that we can find the optimal decoding of a forest in
O(nNodes ∗ nStates2), the runtime for the cutset conditioning algorithm for
loop structures is O(nNodes ∗ nStates3), which is much faster than the
exponential cost of examining all states.

16 / 25



Cutset Conditioning for Inference

x1

x2 x3

x4

Normalizing constant: Add up normalizing constants

from the conditional UGMs (multiplied by the node and

edge potentials that are missing from the conditional UGM)

under each possible value si of the cutset variable x1, i.e.,

Z =
∑
i

Z̃(si) · φ1(si),

where

Z̃(si) =
∑

x′
2,x

′
3,x

′
4

φ̃
(i)
2 (x′2)φ3(x

′
3)φ̃

(i)
4 (x′4)φ2,3(x

′
2, x

′
3)φ3,4(x

′
3, x

′
4).
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Cutset Conditioning for Inference

x1

x2 x3

x4

Marginals: Compute conditional marginals under each

assignment si to the cutset variables (x1 := Xcutset):

P (Xcutset = si)

=
∑

X′|Xcutset=si

P (X ′)

(
=
∑
X′

P (X ′) I[x′1 = si]

)

=
φ1(si)

Z

∑
x′
2,x

′
3,x

′
4

φ1,2(si, x
′
2)φ1,4(si, x

′
4)
∏
j 6=1

φj(x
′
j)
∏

j,k∈E,
j 6=1

φj,k(x
′
j , x

′
k)

=
φ1(si)Z̃(si)

Z 18 / 25



Cutset Conditioning for Inference

x1

x2 x3

x4

Conditionals: Compute conditionals under each

assignment si to the cutset variables (x1 := Xcutset):

P (x2, x3, x4|x1 = si)

=
P (si, x2, x3, x4)

P (Xcutset = si)

=

φ1(si)φ1,2(si, x2)φ1,4(si, x4)
∏

i 6=1 φi(xi)
∏

(i,j)∈E
i 6=1

φi,j(xi, xj)

φ1(si)Z̃(si)

=
φ̃2(x2)φ3(x3)φ̃4(x4)φ2,3(x2, x3)φ3,4(x3, x4)

Z̃(si)
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Cutset Conditioning for Inference

x1

x2 x3

x4

To compute marginals outside of the cutset:

P (x2, x3, x4) =
∑
i

P (x1 = si)P (x2, x3, x4|x1 = si)

This is summing two quantities (the cutset marginals and

the conditionals) that we already know how to calculate

over all assignments of the cutset variable.

20 / 25
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Cutset Conditioning for Sampling

x1

x2 x3

x4

Sampling: First compute the weights of the different

possible values of the cutset variables, Z̃(si).

Generate random value, normalized distribution of weights:

x′1 ∼ P
(
Z̃(si)

Z

)

Use value to generate sample of remaining variables:

x′2, x
′
3, x

′
4 ∼ P

(
x2, x3, x4|x′1

)
P (x) = P (x2, x3, x4|x1)P (x1)

2 bouts of sampling (ancestral sampling)
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Ancestral Sampling

Ancestral sampling involves sampling proportional to a ‘new
normalized’ distribution:

P (x2 = 1, x1 = −1) = P (x2 = 1|x1 = −1)P (x1 = −1) = 0.08
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Cutset Conditioning for Large Models

Efficient if the size of the cutset is small.

In general, the runtime of the cutset conditioning algorithm
is exponential in the number of nodes/states in the cutset.

For example, if we want to do decoding and the cutset
needed to make the conditional UGM a forest has k
elements, we will need to do decoding in sk forests (where
s is the number of states).

Thus, cutset conditioning is only practical when the graph

structure allows us to find a small cutset.
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Homework

Go through the Cutset and Junction demos in UGM.
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Discussion

UGMS are closed under conditioning.

We can convert any unconditional UGM into a conditional
UGM.

The conditional UGM will be defined on the subgraph of the
original graph corresponding to the unobserved nodes.
Subgraphs may have simpler structure than original graph.

We can deal with loops using cutset conditioning.

If cutset is small, exactly decode/infer/sample.
If cutset is large, cutset conditioning is not practical.
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