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Conditional Random Fields - Review

Likelihood function:

p(y|x) =
1

Z (x)

∏
i

φi (yi , x)
∏
ij

φij(yi , yj , x) (1)

Log Linear Assumption:

φi (yi , x) =
(

exp(vTi ,1xi ), exp(vTi ,2xi )
)

(2)

φij(yi , yj , x) =

[
exp(wT

ij ,11xij) exp(wT
ij ,12xij)

exp(wT
ij ,21xij) exp(wT

ij ,22xij)

]
(3)

Special Cases:

• If xij = 1, we recover an MRF.

• If wij ,11 = wij ,22 = w and wij ,12 = wij ,21 = −w , we recover an Ising
model.
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Conditional Random Fields - Review

Let θ = [v ,w ]. Negative Log-Likelihood is given by:

NLL(θ) =
N∑

n=1

−θTF (xn, yn) +
N∑

n=1

logZ (θ, xn) (4)

NLL is convex with the gradient given by:

∇θNLL = −
∑
n

[F (xn, yn)− Ey′F (xn, y
′)] (5)
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Structure Learning

Assumes that the structure of the CRF is known or decided manually.
Can we learn the structure as well ?
Methods for structure learning:

• Iterative edge addition / removal

• Restrict to chordal graphs. Ensure efficient parameter
estimation [Whi90].

• Search in the space of possible graph structures with bounded
treewidth [BJ01].

• Use submodular optimization to discover conditional independences
and learn a bounded tree-width network [NB04].

[Whi90]: Graphical models in applied multivariate analysis
[BJ01]:Thin junction trees
[NB04]:PAC-learning bounded tree-width graphical models
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Structure Learning

Methods for structure learning:

• Graph cuts - recursively partition the nodes to learn multiple
bounded treewidth networks [SG09].

• Restrict to learning networks of bounded degree. [KF09].

• Use L1 regularization and use approximate inference. [LGK06].

[SG09]:Learning thin junction trees via graph cuts
[KF09]:Probabilistic graphical models: principles and techniques
[LGK06]:Efficient Structure Learning of Markov Networks using L1-Regularization
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Learning through Block-L1 regularization

Use block sparsity on all edge parameters [SMFR]

J(θ) = NLL(θ) + λ1||v||22 + λ2R(w) (6)

R(w) =
∑
b

||wb||α (7)

Group Lasso: Use α = 2 to enforce all parameters in the block (one for
each edge) to go to zero.
Can also use α =∞ to enforce block sparsity.

[SMFR]:Structure learning in random fields for heart motion abnormality detection
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Learning through Block-L1 regularization

For minimizing equation 6 by an iterative method, need to calculate
NLL(θ) each time.
Each gradient computation depends on the graph structure (which is
what we are learning). Time complexity = O(kw ) where k is size of the
state space and w is the tree width. w ≤ d (number of nodes)
Possible Solutions:

• Use approximate inference or Gibbs sampling.

• Change the objective function to pseudo-likelihood.
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Pseudo Likelihood

Let ni be the neighbours of i (Markov Blanket) in the graph. Pseudo
likelihood [Bes77] is defined as:

PL(yn|xn) =
∏
i

p(yn
i |yni , x

n) (8)

p(yn
i |yni , x

n) = exp(θTi Fi )(x, y)/Zi (9)

PL is a consistent estimator and convex !
Can be calculated in O(d).

[Bes77]:Efficiency of pseudolikelihood estimation for simple Gaussian fields
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Homework

Read Chapter 3 of Graphical Models, Exponential Families, and
Variational Inference by Wainwright, Jordan.
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Questions ?
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