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Applications

Gaussian mixture models
Hidden Markov Models
Community Detection
Topic Models
Recommender systems
Feature Learning



Latent Variable Models

Difficulties in learning:

e |dentifiability

e Maximum likelihood is NP-hard

e Practice:EM, Variational Bayes have no consistency
guarantees.

e Efficient computational and sample complexities



PCA - Spectral method on covariance matrices
Optimization problem

For (centered) points x; € R? | find projection P
with Rank(P) = k s.t.
: 1 >
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Result: If S =Cov(X) and S = UAU " is eigen decomposition, we have
e U(k.)U(I_), where Uy, are top-k eigen vectors.



Gaussian mixture models

k Gaussians: each sampleis x = Ah + z.
h € |e1,...,ek], the basis vectors. E[h] = w.
A € R?%*: columns are component means.

Let ;v := Aw be the mean.
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2 ~ N(0,0°I) is white Gaussian noise.



Gaussian mixture models

Aim: Given the points x, learn A

Conventional Method: Expectation Maximization
Problem: Converges to local minima

ldea: Use higher order moments




Higher order moments for GMM

For the GMM example,
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Tensor factorization

Multilinear transformation of tensor

Ms(B, C, D) Z«wz (B'a;) - (CTa;) - (D' ay)

If the columns of A are orthogonal,
_ 2 _
Mz(1;a1,01) = ), wil@i, @1 )°a; = w161

a; are eigenvectors of tensor M3



Whitening

Problem: A is not orthogonal in general
Solution:

Find whitening matrix W s.t. W' A =V is an orthogonal matrix,

T = My(W, W, W) = ¥ (W) 3 = Z Wi+ 0 ® 1 O
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Whitening

M, = UDiag(\\UT W = UDiag(A~"/?)

V is an orthogonal matrix; T is an orthogonal tensor.

T(I, {041 ’01) — Zz )\2 <’Uf,;, ’Ul>2’Ui — )\12)1

v; are eigenvectors of tensor T'.
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Tensor power method

@ Randomly initialize the power method. Run to convergence to obtain
v with eigenvalue \.

@ Deflate: T'— Av ® v ® v and repeat.

Is there convergence? Does the convergence depend on initialization?
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Matrix EigenAnalysis

Eigen vectors are fixed points: Mv = \v
Uniqueness (ldentifiability): Iff. A; are distinct.

M(I,v)

Power method: [v — Mo

v1 1s the only local optimum
Let initialization v = ) _. ¢;v;.

It ¢1 # 0, power method converges to v
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Tensor EigenAnalysis

Bad news:

e Decomposition may not always exist for general tensors.
e Finding the decomposition is NP hard in general

For an orthogonal tensor, no spurious local optima!
{v;} are the only local optima.
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Converges to v; for which v;|c;| = max! could be any of them
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Tensor EigenAnalysis

e Matrix power method - Linear convergence,

e Tensor power method - Quadratic convergence

e Matrix power method: Requires gap between largest and
second-largest eigenvalue

e Tensor power method: Requires gap between largest and
second-largest \lambda. c

e Tensor Power method - robust to noise
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Putting it together

Gaussian mixture: @ = Ah + z, where E[h] = w.

z ~ N(0,0%1).

My = Z w;a; @ a;, Mg = Z W;ia; Q a; Q a;.

1 ?

Obtain whitening matrix W from SVD of Ms.
Use W for multilinear transform: 17" = Ms(W. W, W).

Find eigenvectors of 1" through power method and deflation.
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Conclusion

e (Good method for guaranteed convergence to global minima (not guaranteed
by EM)

e Numerous applications to latent variable models

e Scalability issues: requires computing SVDs of large matrices. Storage and
decomposition of large tensors. In practice: use SGD techniques. Don’t know
if there are guarantees.

e \Weak robustness results

e Higher sample complexity
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