Spectral Methods

Outline

- Example Applications
- Spectral Methods PCA
- Latent Variable Models Gaussian Mixture Model
- Tensor factorization
- Eigen Analysis
- Conclusion

Applications

- Gaussian mixture models
- Hidden Markov Models
- Community Detection
- Topic Models
- Recommender systems
- Feature Learning

Latent Variable Models

Difficulties in learning:

- Identifiability
- Maximum likelihood is NP-hard
- Practice:EM, Variational Bayes have no consistency guarantees.
- Efficient computational and sample complexities

PCA - Spectral method on covariance matrices Optimization problem

For (centered) points $x_i \in \mathbb{R}^d$, find projection P with $\text{Rank}(P) = \mathbf{k}$ s.t.

$$\min_{P \in \mathbb{R}^{d \times d}} \frac{1}{n} \sum_{i \in [n]} \|x_i - Px_i\|^2.$$

Result: If S = Cov(X) and $S = U\Lambda U^{\top}$ is eigen decomposition, we have $P = U_{(k)}U_{(k)}^{\top}$, where $U_{(k)}$ are top-k eigen vectors.

Gaussian mixture models

- k Gaussians: each sample is x = Ah + z.
- $h \in [e_1, \ldots, e_k]$, the basis vectors. $\mathbb{E}[h] = w$.
- $A \in \mathbb{R}^{d \times k}$: columns are component means.
- Let $\mu := Aw$ be the mean.
- $z \sim \mathcal{N}(0, \sigma^2 I)$ is white Gaussian noise.

Gaussian mixture models

$$\mathbb{E}[(x-\mu)(x-\mu)^{\top}] = \sum_{i \in [k]} w_i (a_i - \mu) (a_i - \mu)^{\top} + \sigma^2 I.$$

Aim: Given the points x, learn A Conventional Method: Expectation Maximization Problem: Converges to local minima Idea: Use higher order moments

Higher order moments for GMM

For the GMM example,

$$\mathbb{E}[x \otimes x \otimes x] = \sum_{i} w_{i}a_{i} \otimes a_{i} \otimes a_{i} + \sigma^{2} \sum_{i} (\mu \otimes e_{i} \otimes e_{i} + \ldots)$$
$$M_{3} = \sum_{i} w_{i}a_{i} \otimes a_{i} \otimes a_{i}$$
$$M_{2} = \sum_{i} w_{i}a_{i} \otimes a_{i}.$$

Tensor factorization

Multilinear transformation of tensor

$$M_3(B,C,D) := \sum_i w_i(B^\top a_i) \cdot (C^\top a_i) \cdot (D^\top a_i)$$

If the columns of A are orthogonal,

$$M_3(I, a_1, a_1) = \sum_i w_i \langle a_i, a_1 \rangle^2 a_i = w_1 a_1$$

$$a_i \text{ are eigenvectors of tensor } M_3$$

Whitening

Problem: A is not orthogonal in general Solution:

Find whitening matrix W s.t. $W^{\top}A = V$ is an orthogonal matrix.

$T = M_3(W, W, W) = \sum_i w_i (W^{\top} a_i)^{\otimes 3} = \sum_{i \in [k]} w_i \cdot v_i \otimes v_i \otimes v_i$

Whitening

$M_2 = U \mathsf{Diag}(\tilde{\lambda}) U^{\top} \quad W = U \mathsf{Diag}(\tilde{\lambda}^{-1/2})$

V is an orthogonal matrix; T is an orthogonal tensor.

$$T(I, v_1, v_1) = \sum_i \lambda_i \langle v_i, v_1 \rangle^2 v_i = \lambda_1 v_1$$

 v_i are eigenvectors of tensor T .

Tensor power method

- Randomly initialize the power method. Run to convergence to obtain v with eigenvalue λ .
- Deflate: $T \lambda v \otimes v \otimes v$ and repeat.

Is there convergence? Does the convergence depend on initialization?

Matrix EigenAnalysis Eigen vectors are fixed points: $Mv = \lambda v$

Uniqueness (Identifiability): Iff. λ_i are distinct.

Power method: v

$$\mapsto \frac{M(I,v)}{\|M(I,v)\|}.$$

 v_1 is the only local optimum Let initialization $v = \sum_i c_i v_i$.

If $c_1 \neq 0$, power method converges to v_1

Tensor EigenAnalysis

Bad news:

- Decomposition may not always exist for general tensors.
- Finding the decomposition is NP hard in general

For an orthogonal tensor, no spurious local optima! $\{v_i\}$ are the only local optima.

Converges to v_i for which $v_i |c_i| = \max!$ could be any of them

Tensor EigenAnalysis

- Matrix power method Linear convergence;
- Tensor power method Quadratic convergence
- Matrix power method: Requires gap between largest and second-largest eigenvalue
- Tensor power method: Requires gap between largest and second-largest \lambda_i c_i
- Tensor Power method robust to noise

Putting it together

- Gaussian mixture: x = Ah + z, where $\mathbb{E}[h] = w$.
- $z \sim \mathcal{N}(0, \sigma^2 I)$.

$$M_2 = \sum_i w_i a_i \otimes a_i, \quad M_3 = \sum_i w_i a_i \otimes a_i \otimes a_i.$$

- Obtain whitening matrix W from SVD of M_2 .
- Use W for multilinear transform: $T = M_3(W, W, W)$.
- Find eigenvectors of T through power method and deflation.

Conclusion

- Good method for guaranteed convergence to global minima (not guaranteed by EM)
- Numerous applications to latent variable models
- Scalability issues: requires computing SVDs of large matrices. Storage and decomposition of large tensors. In practice: use SGD techniques. Don't know if there are guarantees.
- Weak robustness results
- Higher sample complexity