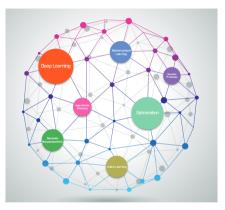
Non-Parametric Bayes

Mark Schmidt

UBC Machine Learning Reading Group

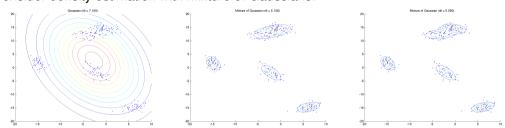
January 2016

Current Hot Topics in Machine Learning



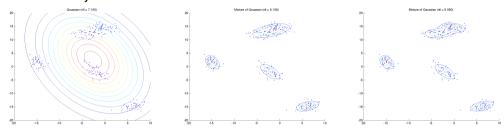
Bayesian learning includes:

- Gaussian processes.
- Approximate inference.
- Bayesian nonparametrics.



Consider density estimation with mixture of Gaussians:

How many clusters should we use?

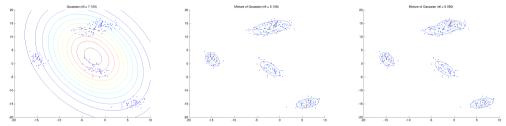


Consider density estimation with mixture of Gaussians:

How many clusters should we use?

Standard approach:

- Try out a bunch of different values for number of clusters.
- **2** Use a model selection criterion to decide (BIC, cross-validation, etc.).

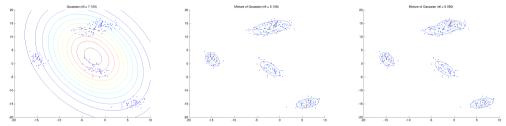


Consider density estimation with mixture of Gaussians:

How many clusters should we use?

Bayesian non-parametric approach:

• Fit a single model where number of clusters adapts to data.



Consider density estimation with mixture of Gaussians:

How many clusters should we use?

Bayesian non-parametric approach:

- Fit a single model where number of clusters adapts to data.
- Number of clusters increases with dataset size.

• Standard Gaussian mixture model with *k* mixtures.

$$x^{i}|z^{i} = c, \theta_{c} \sim \mathcal{N}(\mu_{c}, \Sigma_{c}), \quad z^{i} \sim \mathsf{Cat}(\theta_{1}, \theta_{2}, \dots, \theta_{k}),$$

• Standard Gaussian mixture model with k mixtures.

$$x^{i}|z^{i} = c, \theta_{c} \sim \mathcal{N}(\mu_{c}, \Sigma_{c}), \quad z^{i} \sim \mathsf{Cat}(\theta_{1}, \theta_{2}, \dots, \theta_{k}),$$

• The conjugate prior to the categorical distribution

$$p(z^i = c|\theta) = \theta_c,$$

is the Dirichlet distribution,

$$p(\theta|\alpha) \propto \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} \dots \theta_k^{\alpha_k - 1}.$$

• We can think of Dirichlet as distribution over probabilities of k variables.

• Standard Gaussian mixture model with k mixtures.

$$x^{i}|z^{i} = c, \theta_{c} \sim \mathcal{N}(\mu_{c}, \Sigma_{c}), \quad z^{i} \sim \mathsf{Cat}(\theta_{1}, \theta_{2}, \dots, \theta_{k}),$$

• The conjugate prior to the categorical distribution

$$p(z^i = c|\theta) = \theta_c,$$

is the Dirichlet distribution,

$$p(\theta|\alpha) \propto \theta_1^{\alpha_1 - 1} \theta_2^{\alpha_2 - 1} \dots \theta_k^{\alpha_k - 1}.$$

- We can think of Dirichlet as distribution over probabilities of k variables.
- With this and MCMC/variational inference, we can do the usual Bayesian stuff.
- However, this model requires us to pre-specify *k*.

- We don't want to pre-specify k.
- Naive approach:
 - Put a prior over *k*.
 - Work with posterior over k, θ , and mixture parameters.

- We don't want to pre-specify k.
- Naive approach:
 - Put a prior over k.
 - Work with posterior over k, θ , and mixture parameters.
- Challenges:
 - Do we have to fit a model for every k?
 - For k' < k, posterior are defined over different spaces (needs <u>reversible-jump</u> MCMC).

- We don't want to pre-specify k.
- Naive approach:
 - Put a prior over k.
 - Work with posterior over k, θ , and mixture parameters.
- Challenges:
 - Do we have to fit a model for every k?
 - For k' < k, posterior are defined over different spaces (needs <u>reversible-jump</u> MCMC).
- Non-parametric Bayesian approach:
 - Assume $k = \infty$, but only a finite number were used to generate data.

- We don't want to pre-specify k.
- Naive approach:
 - Put a prior over k.
 - Work with posterior over k, θ , and mixture parameters.
- Challenges:
 - Do we have to fit a model for every k?
 - For k' < k, posterior are defined over different spaces (needs <u>reversible-jump</u> MCMC).
- Non-parametric Bayesian approach:
 - Assume $k = \infty$, but only a finite number were used to generate data.
 - Posterior will contain assignments of points to these clusters.
 - Posterior predictive can assign point to new cluster.

- Recall that stochastic process is an infinite collection of random variables.
- Gaussian process: "infinite-dimensional" Gaussian.
 - Process is defined by mean function and covariance function.
 - Useful non-parametric prior for continuous distributions.

- Recall that stochastic process is an infinite collection of random variables.
- Gaussian process: "infinite-dimensional" Gaussian.
 - Process is defined by mean function and covariance function.
 - Useful non-parametric prior for continuous distributions.
- Dirichlet process: "infinite-dimensional" Dirichlet.
 - Process defined by concentration parameter α .
 - Useful non-parametric prior for categorical distributions.
 - Also called the Chinese restaurant process.

• The first customer sits at their own table.

- The first customer sits at their own table.
- The second customer:
 - Sits at a new table with probability $\frac{\alpha}{1+\alpha}$.
 - Sits at first table with probability $\frac{1}{1+\alpha}$.

- The first customer sits at their own table.
- The second customer:
 - Sits at a new table with probability $\frac{\alpha}{1+\alpha}$.
 - Sits at first table with probability $\frac{1}{1+\alpha}$.
- The (n+1) customer:
 - Sits at a new table with probability $\frac{\alpha}{n+\alpha}$.
 - Sits at table *c* with probability $\frac{n_c}{n+\alpha}$.

• At time n, defines probabilities over k "tables" and all others,

$$\left(\frac{n_1}{n+\alpha}, \frac{n_2}{n+\alpha}, \dots, \frac{n_k}{n+\alpha}, \frac{\alpha}{n+\alpha}\right).$$

- Higher concentration α means more occupied tables.
 - For large *n* number of tables is $O(\alpha \log n)$.
 - We can put a hyper-prior on α .
- A subtle issue is that the CRP is exchangeable:
 - Up to label switching, probabilities are unchanged if order of customers is changed.
- An equivalent view of Dirichlet/Chinese-restaurant process is the "stick-breaking" process.

Dirichlet Process Mixture Models

• Standard finite Gaussian mixture likelihood (fixed variance Σ)

$$p(x|\Sigma, \theta, \mu_1, \mu_2, \dots, \mu_k) = \sum_{c=1}^k \theta_c p(x|\mu_c, \Sigma),$$

where we might assume θ comes from a Dirichlet distribution.

Dirichlet Process Mixture Models

• Standard finite Gaussian mixture likelihood (fixed variance Σ)

$$p(x|\Sigma, \theta, \mu_1, \mu_2, \dots, \mu_k) = \sum_{c=1}^k \theta_c p(x|\mu_c, \Sigma),$$

where we might assume θ comes from a Dirichlet distribution.

Infinite Gaussian mixture likelihood,

$$p(x|\Sigma, \theta, \mu_1, \mu_2, \dots) = \sum_{c=1}^{\infty} \theta_c p(x|\mu_c, \Sigma),$$

where we might assume θ comes from a Dirichlet process.

- So the DP gives us the non-zero θ_c values.
- In practice, variational/MCMC inference methods used.
- https://www.youtube.com/watch?v=0Vh7qZY9sPs

Summary

- Non-parametric Bayes place priors over infinite-dimensional objects.
 - Complexity of model grows with data.

Summary

- Non-parametric Bayes place priors over infinite-dimensional objects.
 - Complexity of model grows with data.
- Gaussian processes define prior over infinite-dimensional functions.
- Dirichlet processes define prior over infinite-dimensional probabilities.
 - Interpretation in terms of Chinese restaurant process.
- Allows us to fit mixture models without pre-specifying number of mixtures.

Summary

- Non-parametric Bayes place priors over infinite-dimensional objects.
 - Complexity of model grows with data.
- Gaussian processes define prior over infinite-dimensional functions.
- Dirichlet processes define prior over infinite-dimensional probabilities.
 - Interpretation in terms of Chinese restaurant process.
- Allows us to fit mixture models without pre-specifying number of mixtures.
- Various extensions exist (some will be discussed next time):
 - Latent Dirichlet allocation (topic models).
 - Beta (indian buffet) process (PCA and factor analysis).
 - Hierarchical Dirichlet process.
 - Poyla trees (generating trees).
 - Infinite hidden Markov models (infinite number of hidden states).