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Current Hot Topics in Machine Learning

Bayesian learning includes:

Gaussian processes.

Approximate inference.

Bayesian nonparametrics.



Motivation: Choosing Number of Mixture Components

Consider density estimation with mixture of Gaussians:

How many clusters should we use?

Standard approach:

1 Try out a bunch of different values for number of clusters.

2 Use a model selection criterion to decide (BIC, cross-validation, etc.).
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Finite Mixture Models

Standard Gaussian mixture model with k mixtures.

xi|zi = c, θc ∼ N (µc,Σc), zi ∼ Cat(θ1, θ2, . . . , θk),

The conjugate prior to the categorical distribution

p(zi = c|θ) = θc,

is the Dirichlet distribution,

p(θ|α) ∝ θα1−1
1 θα2−1

2 . . . θαk−1
k .

We can think of Dirichlet as distribution over probabilities of k variables.

With this and MCMC/variational inference, we can do the usual Bayesian stuff.

However, this model requires us to pre-specify k.
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Infinite Mixture Models

We don’t want to pre-specify k.

Naive approach:

Put a prior over k.
Work with posterior over k, θ, and mixture parameters.

Challenges:

Do we have to fit a model for every k?
For k′ < k, posterior are defined over different spaces (needs reversible-jump MCMC).

Non-parametric Bayesian approach:

Assume k = ∞, but only a finite number were used to generate data.
Posterior will contain assignments of points to these clusters.
Posterior predictive can assign point to new cluster.
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Stochastic Processes and Dirichlet Process

Recall that stochastic process is an infinite collection of random variables.

Gaussian process: “infinite-dimensional” Gaussian.

Process is defined by mean function and covariance function.
Useful non-parametric prior for continuous distributions.

Dirichlet process: “infinite-dimensional” Dirichlet.

Process defined by concentration parameter α.
Useful non-parametric prior for categorical distributions.
Also called the Chinese restaurant process.
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Chinese Restaurant Process

The first customer sits at their own table.

The second customer:

Sits at a new table with probability α
1+α

.
Sits at first table with probability 1

1+α
.

The (n+ 1) customer:

Sits at a new table with probability α
n+α

.
Sits at table c with probability nc

n+α
.
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Chinese Restaurant Process

At time n, defines probabilities over k “tables” and all others,(
n1

n+ α
,
n2

n+ α
, . . . ,

nk
n+ α

,
α

n+ α

)
.

Higher concentration α means more occupied tables.

For large n number of tables is O(α logn).
We can put a hyper-prior on α.

A subtle issue is that the CRP is exchangeable:

Up to label switching, probabilities are unchanged if order of customers is changed.

An equivalent view of Dirichlet/Chinese-restaurant process is the “stick-breaking”
process.



Dirichlet Process Mixture Models

Standard finite Gaussian mixture likelihood (fixed variance Σ)

p(x|Σ, θ, µ1, µ2, . . . , µk) =

k∑
c=1

θcp(x|µc,Σ),

where we might assume θ comes from a Dirichlet distribution.

Infinite Gaussian mixture likelihood,

p(x|Σ, θ, µ1, µ2, . . . ) =
∞∑
c=1

θcp(x|µc,Σ),

where we might assume θ comes from a Dirichlet process.

So the DP gives us the non-zero θc values.

In practice, variational/MCMC inference methods used.

https://www.youtube.com/watch?v=0Vh7qZY9sPs
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Summary

Non-parametric Bayes place priors over infinite-dimensional objects.

Complexity of model grows with data.

Gaussian processes define prior over infinite-dimensional functions.

Dirichlet processes define prior over infinite-dimensional probabilities.

Interpretation in terms of Chinese restaurant process.

Allows us to fit mixture models without pre-specifying number of mixtures.

Various extensions exist (some will be discussed next time):

Latent Dirichlet allocation (topic models).
Beta (indian buffet) process (PCA and factor analysis).
Hierarchical Dirichlet process.
Poyla trees (generating trees).
Infinite hidden Markov models (infinite number of hidden states).
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