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Multi-step Bootstrapping

Generalization of Monte Carlo methods and one-step TD methods
I Includes methods that lie in-between these two extremes
I Methods based on sample episodes of states, actions and rewards

Time intervals for making updates and bootstrapping are no longer the same
I Enables bootstrapping to occur over longer time intervals
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Prediction Problem (Policy Evaluation)

Given a fixed policy π, estimate the state-value function vπ

Monte Carlo update

V (St)← V (St) + α(Gt − V (St))

Gt = Rt+1 + γRt+2 + γ2Rt + 3 + ...+ γT−t−1RT

I Updates of the state-value estimates happen at the end of each episode
I Gt is the complete return of an episode after St

I No bootstrapping involved (does not use other estimations)
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Prediction Problem (Policy Evaluation)

One-step TD update

Vt+1(St)← Vt(St) + α(Rt+1 + γVt(St+1)− Vt(St))

I Updates happen one step later, bootstrapping using Vt(St+1)
I Rt+1 + γVt(St+1) approximates Gt
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n-step TD Prediction

Approximate Gt by looking ahead n steps
I Bootstrap using Vt+n−1(St+n)

G
(n)
t =

{
Rt+1 + γRt+2 + ...+ γnVt+n−1(St+n) 0 ≤ t < T − n

Gt t + n ≥ T

I Incorporate discounted rewards up to Rt+n

G
(n)
t is called the n-step return

G
(1)
t for one-step TD

G
(T )
t for Monte Carlo
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n-step TD Prediction

For n > 1, Vt+n−1(St+n) involves future rewards and value functions not
available at time between t and t + 1

I Must wait until time t + n to update V (St)

Vt+n(St)← Vt+n−1(St) + α(G
(n)
t − Vt+n−1(St+1)) 0 ≤ t < T

No updates during the first n − 1 time steps

n − 1 updates at the end of the episode using Gt

Still considered TD methods (n < T )
I Involves changing an earlier estimate based on how it differs from a later

estimate

Jennifer She (Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto)Multi-step Bootstrapping February 7, 2017 6 / 29



n-step TD Prediction

For n > 1, Vt+n−1(St+n) involves future rewards and value functions not
available at time between t and t + 1

I Must wait until time t + n to update V (St)

Vt+n(St)← Vt+n−1(St) + α(G
(n)
t − Vt+n−1(St+1)) 0 ≤ t < T

No updates during the first n − 1 time steps

n − 1 updates at the end of the episode using Gt

Still considered TD methods (n < T )
I Involves changing an earlier estimate based on how it differs from a later

estimate

Jennifer She (Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto)Multi-step Bootstrapping February 7, 2017 6 / 29



n-step TD Prediction

For n > 1, Vt+n−1(St+n) involves future rewards and value functions not
available at time between t and t + 1

I Must wait until time t + n to update V (St)

Vt+n(St)← Vt+n−1(St) + α(G
(n)
t − Vt+n−1(St+1)) 0 ≤ t < T

No updates during the first n − 1 time steps

n − 1 updates at the end of the episode using Gt

Still considered TD methods (n < T )
I Involves changing an earlier estimate based on how it differs from a later

estimate

Jennifer She (Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto)Multi-step Bootstrapping February 7, 2017 6 / 29



n-step TD Prediction

For n > 1, Vt+n−1(St+n) involves future rewards and value functions not
available at time between t and t + 1

I Must wait until time t + n to update V (St)

Vt+n(St)← Vt+n−1(St) + α(G
(n)
t − Vt+n−1(St+1)) 0 ≤ t < T

No updates during the first n − 1 time steps

n − 1 updates at the end of the episode using Gt

Still considered TD methods (n < T )
I Involves changing an earlier estimate based on how it differs from a later

estimate

Jennifer She (Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto)Multi-step Bootstrapping February 7, 2017 6 / 29



n-step TD Prediction
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n-step TD Prediction

The expected n-step return is guaranteed to be a better estimate of vπ than
Vt+n−1 in the worst case

max
s
|E[G

(n)
t |St = s]− vπ(s)| ≤ γnmax

s
|Vt+n−1(s)− vπ(s)|

I All n-step TD methods converge to correct predictions under appropriate
technical conditions
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Example

Random walk starting from state C

Rewards are all 0 except when following the right arrow from state E

True state-values from A to E are
1

6
,

2

6
,

3

6
,

4

6
,

5

6

Initialize with V (s) = 0.5, ∀s
Suppose the first episode goes from C to the right, through D and E

At the end of the episode
I For a one-step method, only V (E) incremented towards 1
I For a two-step method, both V (D) and V (E) incremented towards 1
I For n ≥ 3, all V (C), V (D) and V (E) incremented towards 1
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Example

Empirical comparison for a similar problem

Random walk with 19 states

All rewards are 0 except the left-most being −1

An intermediate value of n works best
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Control Problem (Policy Evaluation + Policy Improvement)

Find an optimal policy π∗

Alternate estimating action-value function qπ (evaluation) and updating
policy π (improvement)

I Estimate qπ instead of vπ because we need this information to decide the next
π
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Control Problem (On-Policy)
Evaluation step

Monte Carlo evaluation

Q(St ,At)← Q(St ,At) + α(Gt − Q(St ,At))

Sarsa (one-step on-policy TD) evaluation

Qt+1(St ,At)← Qt(St ,At) + α(Rt+1 + γQt(St+1,At+1)− Qt(St ,At))

I Rt+1 + γQt(St+1,At+1) approximates Gt

Improvement step

ε-greedy (or any other ε-soft policy) helps maintain exploration

A∗ ← argmaxaQ(St , a)

∀a ∈ A(St),

π(a|St)←

{
1− ε+ ε/|A(St)| a = A∗

ε a 6= A∗
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n-step Sarsa

Modification to evaluation step

Similar to prediction, approximate Gt with

G
(n)
t =

{
Rt+1 + γRt+2 + ...+ γnQt+n−1(St+n,At+n) 0 ≤ t < T − n

Gt t + n ≥ T

Qt+n(St ,At)← Qt+n−1(St ,At) + α(G
(n)
t − Qt+n−1(St ,At)) 0 ≤ t < T

Expected Sarsa
I Replace Qt+n−1(St+n,At+n) with

E[Qt+n−1(St+n,At+n)|St+n] =
∑
a

π(a|St+n)Qt+n−1(St+n, a)

I Moves deterministically in same direction Sarsa moves in expectation
I Requires more computation but eliminates variance from sampling At+n
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n-step Sarsa
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n-step Sarsa
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Example

Gridworld scenario where rewards at all states are 0 except a positive reward
on the square G

Initialize V (s) = 0, ∀s
Suppose you take a path on the first episode, and you end at G

At the end of the episode
I One-step method only strengthens the last state-actions pair in the path for

the next policy
I n-step method strengthens the last n state-actions pairs in the path for the

next policy
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Control Problem (Off-Policy)

Learn the value for one policy π while following another policy µ
I π often greedy and µ exploratory (ex. ε-greedy)
I Requires that π(a|s) > 0 implies µ(a|s) > 0

Importance sampling (Monte Carlo)
I Step size takes into account the difference between π and µ using relative

probability of all the subsequent actions

V (St)← V (St) + αρTt (Gt − V (St))

I ρTt is the importance sampling ratio

ρTt =
T−1∏
k=t

π(Ak |Sk)P(Sk+1|Sk ,Ak)

µ(Ak |Sk)P(Sk+1|Sk ,Ak)
=

T−1∏
k=t

π(Ak |Sk)

µ(Ak |Sk)
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Off-Policy Learning by Importance Sampling

In n-step methods, returns are constructed over n steps
I Interested in the relative probability of just those n actions
I Incorporate ρt+n

t (in place of ρTt ) into TD

ρt+n
t =

min(t+n,T−1)∏
k=t

π(Ak |Sk)

µ(Ak |Sk)

Vt+n(St)← Vt+n−1(St) + αρt+n
t (G

(n)
t − Vt+n−1(St)) 0 ≤ t < T

If any π(Ak |Sk) = 0, then ρt+n
t = 0 and return would be totally ignored

If any π(Ak |Sk) >> µ(Ak |Sk), then ρt+n
t increases weight given to return,

which compensates for action being rarely selected under µ
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Off-Policy Learning by Importance Sampling

Evaluation step
I ρt+n

t+1 replaces ρt+n
t because requires no further sampling of At

I At already determined

Qt+n(St ,At)← Qt+n−1(St ,At) + αρt+n
t+1(G

(n)
t − Qt+n−1(St ,At)) 0 ≤ t < T

Expected Sarsa
I ρt+n−1

t+1 replaces ρt+n
t+1 because requires no sampling of At+n

I Expected value all actions on (t + n)th step into account
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Off-Policy Learning by Importance Sampling
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Off-Policy Learning by Importance Sampling

Importance sampling enables off-policy at the cost of increasing the variance
of the updates

I Requires smaller step sizes and thus slower
I Slower speed inevitable because using less relevant data

Improvements
I Autostep method (Mahmood et al, 2012)
I Invariant updates (Karampatziakis and Langford, 2010)
I Usage technique (Mahmood and Sutton, 2015)

Off-policy possible without importance sampling?
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Control Problem (Off-Policy)
Expected Sarsa (on-policy, one-step case)

Qt+1(St ,At)← Qt(St ,At) + α(Rt + γE[Qt(St+1,At+1)|St+1]− Qt(St ,At))

Qt+1(St ,At)← Qt(St ,At) + α(Rt + γ
∑
a

π(a|St+1)Qt(St+1, a)−Qt(St ,At))

Use a different policy µ to generate behaviour
I Updated values are independent of µ(At+1|St+1)
I If π is greedy, this is exactly the Q-learning method

π(a|St+1) =

{
1 a = argmaxa′Q(St+1, a

′)

0 otherwise

Qt+1(St ,At)← Qt(St ,At) + α(Rt + γmax
a

Qt(St+1, a)− Qt(St ,At))

I Possible to form off-policy methods without importance sampling
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

Alternate the incorporation of expected values of future action-value
estimates and corrections based on actual steps up to St+n

G
(n)
t = Rt+1 + γ

∑
a

π(a|St+1)Qt(St+1, a)

− γπ(At+1|St+1)Qt(St+1,At+1)

+ γπ(At+1|St+1)(Rt+2 + γ
∑
a

π(a|St+2)Qt+1(St+2, a))

− γ2π(At+1|St+1)π(At+2|St+2)Qt+1(St+2,At+2)

+ γ2π(At+1|St+1)π(At+2|St+2)(Rt+3 + γ
∑
a

π(a|St+3)Qt+2(St+3, a))

+ ...

+ γmin(t+n,T )−1(

min(t+n,T )−1∏
i=t+1

π(Ai |Si ))

(Rmin(t+n,T ) + γ
∑
a

π(a|Smin(t+n,T ))Qmin(t+n,T )(Smin(t+n,T ), a))
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

Define ”TD error” δt to simplify notation

δt = Rt+1 + γ
∑
a

π(a|St+1)Qt(St+1, a)− Qt−1(St ,At)

G
(n)
t = Qt−1(St ,At) +

min(t+n,T )−1∑
k=t

δk

k∏
i=t+1

γπ(Ai |Si )

Qt+n(St ,At)← Qt+n−1(St ,At) + α(G
(n)
t − Qt+n−1(St+n,At+n))

G
(1)
t is used for Expected Sarsa
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

The n-step Tree Backup algorithm is the natural extension of Q-learning to
the multi-step case

I Requires no importance sampling like Q-learning

However, if µ and π vastly differ then π(At+i |St+i ) may be small for some i
and bootstrapping may span only a few steps even if n is large
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Conclusion

n-step bootstrapping looks ahead to the next n rewards, states and actions,
which generalizes Monte Carlo methods and one-step TD methods

Advantages
I Intermediate amount of bootstrapping often works better than the two

extremes

Disadvantages
I Requires a delay of n time steps before updating
I Requires more computation per time step
I Requires more memory to store variables from the last n time steps

n-step TD policy evaluation

On-policy control: n-step Sarsa

Off-policy control:
I Importance sampling
I n-step Tree Backup algorithm
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