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Multi-step Bootstrapping

@ Generalization of Monte Carlo methods and one-step TD methods

» Includes methods that lie in-between these two extremes
» Methods based on sample episodes of states, actions and rewards
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Multi-step Bootstrapping

@ Generalization of Monte Carlo methods and one-step TD methods

» Includes methods that lie in-between these two extremes
» Methods based on sample episodes of states, actions and rewards

o Time intervals for making updates and bootstrapping are no longer the same

> Enables bootstrapping to occur over longer time intervals
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Prediction Problem (Policy Evaluation)

@ Given a fixed policy 7, estimate the state-value function v,
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Prediction Problem (Policy Evaluation)

@ Given a fixed policy 7, estimate the state-value function v,
@ Monte Carlo update

V(St) + V(S:) + oGt — V(S:))

G =Rej1+YRey2 + Rt +3+ ..+ 'Ry

» Updates of the state-value estimates happen at the end of each episode
> G; is the complete return of an episode after S;
» No bootstrapping involved (does not use other estimations)
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Prediction Problem (Policy Evaluation)

@ One-step TD update

Vir1(Se) ¢ Vi(Se) + a(Repa + 9 Vi(Ser1) — Vi(St))

» Updates happen one step later, bootstrapping using V:(S:+1)
» Ret1 + vVe(Set1) approximates G,
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n-step TD Prediction

@ Approximate G; by looking ahead n steps
» Bootstrap using Viin—1(Se+n)

cm — Rey1 +YRe2 + oo + 9" Viin—1(Sen) 0<t< T —n
¢ Gt t + n Z T

> Incorporate discounted rewards up to Riyn

o G!" is called the n-step return
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n-step TD Prediction

@ Approximate G; by looking ahead n steps
» Bootstrap using Viin—1(Se+n)

6 — {Rm + YR+ o 47" Vern1(Sern) 0<t< T —n
G t+n>T
> Incorporate discounted rewards up to Riyn
o G is called the n-step return
° Gt(l) for one-step TD
° Gt(T) for Monte Carlo
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n-step TD Prediction

@ For n > 1, Viin_1(St+n) involves future rewards and value functions not
available at time between t and t + 1

Jennifer She (Reinforcement Learning: An Introductior Multi-step Bootstrapping February 7, 2017 6 /29



n-step TD Prediction

@ For n > 1, Viin_1(St+n) involves future rewards and value functions not
available at time between t and t + 1

» Must wait until time t + n to update V/(S;)
Vern(Se) & Virn-1(Se) + a6 — Verpoa(Sen)) 0<t< T
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n-step TD Prediction

@ For n > 1, Viin_1(St+n) involves future rewards and value functions not
available at time between t and t + 1

» Must wait until time t + n to update V/(S;)
Vern(Se) & Virn-1(Se) + a6 — Verpoa(Sen)) 0<t< T

o No updates during the first n — 1 time steps
@ n— 1 updates at the end of the episode using G;
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n-step TD Prediction

@ For n > 1, Viin_1(St+n) involves future rewards and value functions not
available at time between t and t + 1
» Must wait until time t + n to update V/(S;)

Vt+n(5t) — Vt+n—1(5t) + Oé(Gtgn) - Vt+n—1(5t+1)) O S t < T

No updates during the first n — 1 time steps
n — 1 updates at the end of the episode using G;

@ Still considered TD methods (n < T)

> Involves changing an earlier estimate based on how it differs from a later
estimate
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n-step TD Prediction

ID (1-step) 2-step 3-step n-step Monte Carlo
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n-step TD Prediction

n-step TD for estimating V =~ v,

Initialize V'(s) arbitrarily, s € 8
Parameters: step size a € (0. 1], a positive integer n
All store and access operations (for S; and R¢) can take their index mod n

Repeat (for each episode):
Initialize and store Sy # terminal
T+ o
Fort=0,1.2,...:
| Ift < T, then:
| Take an action according to 7(-|S;)
| Observe and store the next reward as I;+1 and the next state as Siy1
| If Si41 is terminal, then T+t + 1
| 7+ t—n+1 (7isthe time whose state’s estimate is being updated)
|
|
|
|

T r >0
G Tt yorip
If7+n<T,then: G4+ G+7"V(S1n) (G
V(S,) + V(S,) +al@ - V(S,)]

Untilt=7-1
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n-step TD Prediction

@ The expected n-step return is guaranteed to be a better estimate of v, than
Viin—1 in the worst case

max|E[G{"|S; = s] = vx(s)| < 7"max| Vesn-1(s) = va(s)|
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n-step TD Prediction

@ The expected n-step return is guaranteed to be a better estimate of v, than
Viin—1 in the worst case

max|E[G{"|S; = s] = vx(s)| < 7"max| Vesn-1(s) = va(s)|

> All n-step TD methods converge to correct predictions under appropriate
technical conditions
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Example

0 e 0 e 0 e 0 Q 0 G 1 .
start

@ Random walk starting from state C

@ Rewards are all 0 except when following the right arrow from state E

1 2 3 45
Ti tate-val fi AtoE e e
o rue state-values rrom (o] are 6 6 6’ 6 6
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Example

0O N 0 , ™~ 0 , /™ 0 ,——~ 0 ,—/— 1
B—®—~—0C~—0-—0C—n

start

Random walk starting from state C

Rewards are all 0 except when following the right arrow from state E

1 23 45
True state-values from A to E are — —

66666
Initialize with V(s) = 0.5, Vs
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Example

0O N 0 , ™~ 0 , /™ 0 ,——~ 0 ,—/— 1
B—®—~—0C~—0-—0C—n

start
@ Random walk starting from state C
@ Rewards are all 0 except when following the right arrow from state E

1 23 45
True state-values from A to E are — —

66666
Initialize with V(s) = 0.5, Vs
Suppose the first episode goes from C to the right, through D and E
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Example

0O N 0 , ™~ 0 , /™ 0 ,——~ 0 ,—/— 1
B—®—~—0C~—0-—0C—n

start
@ Random walk starting from state C
@ Rewards are all 0 except when following the right arrow from state E

1 2 3 45
True state-values from A to E are — —

66666
Initialize with V(s) = 0.5, Vs
Suppose the first episode goes from C to the right, through D and E

At the end of the episode
» For a one-step method, only V(E) incremented towards 1
» For a two-step method, both V(D) and V/(E) incremented towards 1
» For n >3, all V(C), V(D) and V(E) incremented towards 1
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Example

@ Empirical comparison for a similar problem
@ Random walk with 19 states

@ All rewards are 0 except the left-most being —1
0.55
05

Average 0.45

RMS error
over 19 states 04
and first 10
episodes %
03F
025, N N . 2 ,
0 0.2 04 0.6 08 1
(6]
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Example

@ Empirical comparison for a similar problem
@ Random walk with 19 states

@ All rewards are 0 except the left-most being —1
0.55
05

Average 0.45

RMS error

over 19 states 04
and first 10

episodes %

03

025, K
0 0.2 04 0.6 08 1
(6]

@ An intermediate value of n works best
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Control Problem (Policy Evaluation + Policy Improvement)

@ Find an optimal policy .
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Control Problem (Policy Evaluation + Policy Improvement)

@ Find an optimal policy .
o Alternate estimating action-value function g, (evaluation) and updating
policy 7 (improvement)
evaluation
Q ~ qx

™ Q
7~ greedy(Q)

improvement

» Estimate g, instead of v, because we need this information to decide the next
™
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Control Problem (On-Policy)
Evaluation step

@ Monte Carlo evaluation
Q(St, Ar) < Q(St, Ar) + a(Gr — Q(St, Ar))
@ Sarsa (one-step on-policy TD) evaluation

Qt+1(st7 At) — Qt(St, At) + Oé(Rt+1 + ’)/Qt(SH»la At+1) - Qt(St, At))

> Rt+]_ + ’}/Qt(SH,l,AH,l) approximates Gt
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Control Problem (On-Policy)
Evaluation step

@ Monte Carlo evaluation
Q(StaAt) <~ Q(ShAt) + CV(Gt - Q(ShAt))
@ Sarsa (one-step on-policy TD) evaluation

QR:r41(St, Ar) — Qi(St, Ar) + a(Rey1 + 7 Qe(Ser1, Arr1) — Qi(St, Ar))

> Rei1 + 7Q¢(Stt1, Arr1) approximates Gy
Improvement step

o e-greedy (or any other e-soft policy) helps maintain exploration
A* + argmax,Q(S;, a)

Va e A(S),

~(alS0) {1 s
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n-step Sarsa

@ Modification to evaluation step

@ Similar to prediction, approximate G; with

¢ _ Rev1i+YRevo + oo + 7" Qein—1(Sen. Aryn) 0<t< T —n
¢ G; t+n>T

Qt+n(5taAt) — Qt+n—1(5t,At) + Oé(Gt(n) - Qt+n—1(5t7At)) 0<t< T
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n-step Sarsa

@ Modification to evaluation step

@ Similar to prediction, approximate G; with

G _ Rev1i+YRevo + oo + 7" Qein—1(Sen. Aryn) 0<t< T —n
¢ G; t+n>T

Qt+n(5taAt) — Qt+n—1(5t,At) + Oé(Gt(n) - Qt+n—1(5t7At)) 0<t< T

o Expected Sarsa
> Replace Qirn—1(Sttn, Aesn) with
E[Qt+n—1(st+n7 At+n)|5t+n] = Z 7T(3|5t+n)Qt+n—1(5t+n7 a)

a
» Moves deterministically in same direction Sarsa moves in expectation
> Requires more computation but eliminates variance from sampling A¢;p
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n-step Sarsa

1-step Sarsa co-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo  Expected Sarsa

A R
I

[l PP
o O—e—O—e—0
oo - 00
O - o—O—e—O—e
.>OH s @)oo
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n-step Sarsa

Initialize Q(s,a) arbitrarily, Vs € 8,0 € A

Initialize 7 to be s-greedy with respect to @, or to a fixed given policy
Parameters: step size e € (0,1], small £ > 0, a positive integer n

All store and access operations (for S, A;, and R;) can take their index mod n

Repeat (for each episode):

Initialize and store Sy # terminal

Select and store an action Ag ~ m(-|Sp)

T+

Fort=0,1,2,...:

| Ift<T, then:

| Take action A,

| Observe and store the next reward as ;1 and the next state as S;41

| If Se41 is terminal, then:

| T+—t+1

| else:
| Select and store an action Agyq ~ 7(-|S¢11)
| 7+ t—n+1 (ris the time whose estimate is being updated)
|
|
|
|
|

If >0
@ T R,
Ifr+n<T,then G — G +7"Q(Srin, Arin) (™)

Q(Sr, A7) = Q(Sr, Ar) + a[G — Q(Sr, A7)
If 7 is being learned, then ensure that =(-|S;) is e-greedy wrt Q
Until7=T -1
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Example

@ Gridworld scenario where rewards at all states are 0 except a positive reward
on the square G

o Initialize V(s) =0, Vs
@ Suppose you take a path on the first episode, and you end at G

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
I ] naimall
1 :
o m mall}
-— al ] G el [y
- ) A |

@ At the end of the episode
» One-step method only strengthens the last state-actions pair in the path for
the next policy

> n-step method strengthens the last n state-actions pairs in the path for the
next policy
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Control Problem (Off-Policy)

@ Learn the value for one policy 7 while following another policy u

» 7 often greedy and p exploratory (ex. e-greedy)
» Requires that 7(a|s) > 0 implies p(als) >0
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Control Problem (Off-Policy)

@ Learn the value for one policy 7 while following another policy u
» 7 often greedy and p exploratory (ex. e-greedy)
> Requires that w(a|s) > 0 implies p(als) > 0

@ Importance sampling (Monte Carlo)

> Step size takes into account the difference between 7 and p using relative
probability of all the subsequent actions

V(Se) « V(Se) + ap! (G — V(St))

» p! is the importance sampling ratio

T-1 -1

T 17 "(AS)P(Ska ]Sk, A) T
e = H /L(Ak‘Sk)P(Sk+1|5k,Ak) - H

k=t

7 (Ak|Sk)
B(Ak|Sk)

k=t
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Off-Policy Learning by Importance Sampling

@ In n-step methods, returns are constructed over n steps

> Interested in the relative probability of just those n actions
» Incorporate p'™ (in place of p{ ) into TD

it — min(tﬁT_l) 7(Ak|Sk)
‘ o (A SK)

Viien(Se) < Verno1(Se) +ap (G = Viyno1(Se)) 0<t<T
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Off-Policy Learning by Importance Sampling

@ In n-step methods, returns are constructed over n steps

> Interested in the relative probability of just those n actions
» Incorporate p'™ (in place of p{ ) into TD

in(t+n, T—1
con MR A5

Pe = A
2 (AlSK)

Viien(Se) < Verno1(Se) +ap (G = Viyno1(Se)) 0<t<T

o If any (Ak|Sk) = 0, then pi™" = 0 and return would be totally ignored

o If any m(Ak|Sk) >> n(Ak|Sk), then pi™" increases weight given to return,
which compensates for action being rarely selected under p
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Off-Policy Learning by Importance Sampling

@ Evaluation step

> pﬁi’l’ replaces p;"" because requires no further sampling of A;

> A; already determined

Qt1n(St; At) < Qrrn-1(St, Ar) + OZPEIT( — Qe1n-1(51,A:)) 0<t<T

t+n
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Off-Policy Learning by Importance Sampling

@ Evaluation step

> pﬁi’l’ replaces p;"" because requires no further sampling of A;

> A; already determined

Qt+n(5t,At) — Qt+n—1(5taAt) + OZPEI;( Qt+n 1(5t, )) 0<t<T

t+n

@ Expected Sarsa

t+n—1 t+n H H
> pir1 - replaces p; 77 because requires no sampling of Ary

» Expected value all actions on (t + n)th step into account
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Off-Policy Learning by Importance Sampling

Input: an arbitrary behavior policy p such that p(als) > 0,¥s € 8,ac A
Initialize Q(s,a) arbitrarily, Vs € 8,a € A

Initialize = to be s-greedy with respect to @, or as a fixed given policy
Parameters: step size a € (0, 1], small £ > 0, a positive integer n

All store and access operations (for S, A, and Ry) can take their index mod n

Repeat (for each episode):
Initialize and store Sp # terminal
Select and store an action Ag ~ pu(-|So)
T <
Fort=0,1,2,...:
Ift < T, then:
Take action A;
Observe and store the next reward as Ry+1 and the next state as S¢+1
If S; 41 is terminal, then:
Te—t+1
else:
Select and store an action Agyj ~ pu(+|Sey1)
T4+ t—n+1 (7 is the time whose estimate is being updated)

If > 0:
min(r+n—1,T—1) =(4;|S;
p e I Gy (G
6. i i
740 <T, then: G C+7"Q(Srins Arin) (c(r"’)

QSr, A7) = Q(Sr, Ar) + ap[G — Q(Sr, AL )]
If 7 is being learned, then ensure that m(-|S,) is e-greedy wrt @
Until7 =T -1
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Off-Policy Learning by Importance Sampling

@ Importance sampling enables off-policy at the cost of increasing the variance
of the updates

» Requires smaller step sizes and thus slower
» Slower speed inevitable because using less relevant data
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Off-Policy Learning by Importance Sampling

@ Importance sampling enables off-policy at the cost of increasing the variance
of the updates

» Requires smaller step sizes and thus slower
» Slower speed inevitable because using less relevant data
@ Improvements

> Autostep method (Mahmood et al, 2012)
> Invariant updates (Karampatziakis and Langford, 2010)
» Usage technique (Mahmood and Sutton, 2015)
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Off-Policy Learning by Importance Sampling

@ Importance sampling enables off-policy at the cost of increasing the variance
of the updates

» Requires smaller step sizes and thus slower
» Slower speed inevitable because using less relevant data
@ Improvements

> Autostep method (Mahmood et al, 2012)
> Invariant updates (Karampatziakis and Langford, 2010)
» Usage technique (Mahmood and Sutton, 2015)

o Off-policy possible without importance sampling?
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Control Problem (Off-Policy)

o Expected Sarsa (on-policy, one-step case)

Qr41(5t, Ar) < Q(St, Ar) + a(Ry + YE[Qe(St+1, Art1)|St41] — Qe(St, At))

Qe11(Se, Ar) <= Qu(Se, Ae) + a(Re + 72 7(a|S5e41) Qe(Se1, @) — Qe(Se, Ar))
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Control Problem (Off-Policy)

o Expected Sarsa (on-policy, one-step case)

Qr41(5t, Ar) < Q(St, Ar) + a(Ry + YE[Qe(St+1, Art1)|St41] — Qe(St, At))

Qe11(Se, Ar) <= Qu(Se, Ae) + a(Re + 72 7(a|S5e41) Qe(Se1, @) — Qe(Se, Ar))

@ Use a different policy u to generate behaviour
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Control Problem (Off-Policy)

o Expected Sarsa (on-policy, one-step case)

Qr41(5t, Ar) < Q:(St, Ar) + a( Ry + YE[Qe(St41, Art1)|Se41] — Qe(St, Ar))

Qe11(Se, Ar) <= Qu(Se, Ae) + a(Re + 72 7(a|S5e41) Qe(Se1, @) — Qe(Se, Ar))

@ Use a different policy u to generate behaviour

» Updated values are independent of pu(Asr1]Se+1)
> If 7 is greedy, this is exactly the Q-learning method

1 a=argmaxy Q(St+1,a’)
0 otherwise

m(alSt+1) = {

Qe+1(St, Ar) < Qe(St, Ar) + a(R: + ’VmaaXQt(StH, a) — Q:(St, Ar))
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Control Problem (Off-Policy)

@ Expected Sarsa (on-policy, one-step case)

Qi11(Se, Ar) + Qe(St, Ar) + a(Re + YE[Q+(St41, Ars1)|Se41] — Q:(St, Ar))

Qe+1(St, Ar) < Qe(St, Ar) + o Re + ’YZ m(a|St+1) Qe(St41, @) — Qe(St, Ar))

@ Use a different policy u to generate behaviour

» Updated values are independent of pu(Asr1]Se+1)
> If 7 is greedy, this is exactly the Q-learning method

1 a=argmaxy Q(St+1,a’)

m(alSt+1) = {

0 otherwise

Qe+1(St, Ar) < Qe(St, Ar) + a(R: + 'VmaaXQt(StHa a) — Q:(St, Ar))

> Possible to form off-policy methods without importance sampling
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

@ Alternate the incorporation of expected values of future action-value
estimates and corrections based on actual steps up to S;y,
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

@ Alternate the incorporation of expected values of future action-value
estimates and corrections based on actual steps up to S;y,

G =Ry +7 Z 7(a|Se41) Qe(Se41, a)

- ’YTF(At+1|5t+1)Qt(5t+1, At+1)
+ym(Ae+1|Se1) (Res2 + 4 Z 7(alSt12) Qev1(St42, a))

— P (A1]Ser1)T(Ars2]Ser2) Qer1(Ses2, Ars2)
+ V1 (Aet1] Ser1)m(Aera| Sera) (Ress + Z 7(a|St13) Qey2(Sey3, a))

+ ...
min(t+n,T)—1
+ ,ymin(t+n,T)—1( H 71_(Allsl))
i=t+1
(Rmin(t+n,T) T Z 7(a|Smin(t+n, 7)) @min(t+n, T) (Smin(t+n,7), 3))
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

@ Define "TD error” §; to simplify notation

0t = Rep1 +7 Y m(alSt41) Qe(St41,3) — Qe-1(St, Ar)
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

@ Define "TD error” §; to simplify notation

0t = Rep1 +7 Y m(alSt41) Qe(St1,3) — Qe-1(St, Ar)

min(t+n,T)—1 k
6" = Qa(SnA)+ Y. & [ aw(AlS)
k=t i=t+1

Qe1n(St, Ar) ¢ Qen—1(Se, Ar) + CV(Gt(n) — Qe+n—1(St+ns Atsn))
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

@ Define "TD error” §; to simplify notation

0t = Rep1 +7 Y m(alSt41) Qe(St1,3) — Qe-1(St, Ar)

min(t+n,T)—1 k
6" = Qa(SnA)+ Y. & [ aw(AlS)
k=t i=t+1

Qe1n(St, Ar) ¢ Qen—1(Se, Ar) + CV(Gt(n) — Qe+n—1(St+ns Atsn))

° Gt(l) is used for Expected Sarsa
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

Tnitialize Q(s,a) arbitrarily, Vs € S,a € A

Tnitialize 7 to be e-greedy with respect to €, or as a fixed given policy
Parameters: step size a € (0, 1], small £ > 0, a positive integer n

All store and access operations can take their index mod n

Repeat (for each episode):
Initialize and store Sp # terminal
Select and store an action Ag ~ 7(-/Sp)
Store Q(Sp, Ag) as Qo
T+ o0
Fort=0,1,2....:
Ift<T:
Take action A
Observe the next reward R; observe and store the next state as S+
1f S, 1 is terminal:
Tet+1
Store R— Q; as &,
else:
Store R+ 35, w(a]Si+1)Q(St+1,0) — Q as &
Select arbitrarily and store an action as A4
Store Q(Si+1,Ar41) as Qery
Store m(Agi1]Sy11) as Teqy
T+ t—n+1 (7 is the time whose estimate is being updated)

Ifr>o0:
E+1
G+ Qr
Fork=7,...,min(r +n—1,T—1);
G+ G+ B
B ETp4

Q(Sr. A7) + Q(Sr, A7)+ a[G — Q(Sr, Ar)]
If 7 is being learned, then ensure that (alS,) is e-greedy wrt Q(S:.-)
Until 7 =T — 1
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

@ The n-step Tree Backup algorithm is the natural extension of Q-learning to
the multi-step case

» Requires no importance sampling like Q-learning
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Off-Policy Learning Without Importance Sampling: The
n-step Tree Backup Algorithm

@ The n-step Tree Backup algorithm is the natural extension of Q-learning to
the multi-step case

» Requires no importance sampling like Q-learning

@ However, if u and 7 vastly differ then m(A¢1;|S¢+i) may be small for some i
and bootstrapping may span only a few steps even if n is large
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Conclusion

@ n-step bootstrapping looks ahead to the next n rewards, states and actions,
which generalizes Monte Carlo methods and one-step TD methods
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> Intermediate amount of bootstrapping often works better than the two
extremes
Disadvantages
> Requires a delay of n time steps before updating

» Requires more computation per time step
» Requires more memory to store variables from the last n time steps
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Conclusion

@ n-step bootstrapping looks ahead to the next n rewards, states and actions,
which generalizes Monte Carlo methods and one-step TD methods
Advantages

> Intermediate amount of bootstrapping often works better than the two
extremes

Disadvantages

> Requires a delay of n time steps before updating
» Requires more computation per time step
» Requires more memory to store variables from the last n time steps

@ n-step TD policy evaluation
@ On-policy control: n-step Sarsa
e Off-policy control:

> Importance sampling
> n-step Tree Backup algorithm
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