Minimizing Finite Sums

Mohamed Osama Ahmed
13/10/2015

Big-N Problems
@ Recall the regularized empirical risk minimization problem:

N

1

Xr'g]%nD NZL(X, aj, b)) + Ar(x)
i=1

data fitting term + regularizer

Big-N Problems
@ Recall the regularized empirical risk minimization problem:
1N
in — L i, b A
X’Eﬁ{‘o/v; (x;ai,b1) + Ar(x)
data fitting term + regularizer

@ Stochastic methods:

o O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.

Big-N Problems
@ Recall the regularized empirical risk minimization problem:

N
1
min N;L(x,a;,b;) + Ar(x)

xERD

data fitting term + regularizer

@ Stochastic methods:

o O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.

@ Deterministic methods:

o O(p") convergence but requires N gradients per iteration.
e The faster rate is possible because N is finite.

Big-N Problems
Recall the regularized empirical risk minimization problem:

N
1
min N;L(x,a;,b;) + Ar(x)

xERD

data fitting term + regularizer

Stochastic methods:

o O(1/t) convergence but requires 1 gradient per iterations.
o Rates are unimprovable for general stochastic objectives.

Deterministic methods:

o O(p") convergence but requires N gradients per iteration.
e The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?

log(excess cost)

L

Motivation for Hybrid Methods

stochastic

deterministic

time

Y

log(excess cost)

Motivation for Hybrid Methods

hybrid

stochastic

deterministic

time

Y

Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.

Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
@ The FG method uses all NV gradients,

1 N
VF(x) = =) VA(xY).
i=1

=

@ The SG method approximates it with 1 sample,

N
1
Vf,(xt) ~ m > V(X
i=1

Hybrid Deterministic-Stochastic

@ Approach 1: control the sample size.
@ The FG method uses all NV gradients,

1 N
VF(x) = =) VA(xY).
i=1

=

@ The SG method approximates it with 1 sample,
T
VF.(xt) ~ E VFi(xt

@ A common variant is to use larger sample B¢,

N
1 1
B PR%ACHES N > V(X
i=1

ieBt

Approach 1: Batching

@ The SG method with a sample B* uses iterations
t+1 ¢ o t
xTh=x— B Z fi(x").
ieBt

e For a fixed sample size |B!|, the rate is sublinear.

Approach 1: Batching

@ The SG method with a sample B* uses iterations
t+1 _
x = xt fi(x
~ B >l
ieBt

e For a fixed sample size |B!|, the rate is sublinear.

e Gradient error decreases as sample size |B!| increases.

Approach 1: Batching

The SG method with a sample B* uses iterations

t+1
X = xt |Bt|zf

ieBt

For a fixed sample size |Bt|, the rate is sublinear.
Gradient error decreases as sample size |B!| increases.
Common to gradually increase the sample size |Bt|.
[Bertsekas & Tsitsiklis, 1996]

We can choose |B!| to achieve a linear convergence rate:

o Early iterations are cheap like SG iterations.
o Later iterations can use a Newton-like method.

Stochastic Average Gradient

e Growing |Bt| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?

Stochastic Average Gradient

e Growing |Bt| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
e YES!

Stochastic Average Gradient

e Growing |Bt| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select ir from {1,2,..., N} and compute f(x").

N
T=xt— %Z fi(x")

Stochastic Average Gradient

e Growing |Bt| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select ir from {1,2,..., N} and compute f(x").

tOéN
= NZ

Stochastic Average Gradient

e Growing |Bt| eventually requires O(N) iteration cost.

e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select ir from {1,2,..., N} and compute f(x").

tOéN
= NZ

e Memory: yf = Vfi(x") from the last ¢t where i was selected.
[Le Roux et al., 2012]

Stochastic Average Gradient

e Growing |Bt| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select ir from {1,2,..., N} and compute f(x").

tOéN
= NZ

e Memory: yf = Vfi(x") from the last ¢t where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Stochastic Average Gradient

e Growing |Bt| eventually requires O(N) iteration cost.
e Can we have a rate of O(p") with only 1 gradient
evaluation per iteration?
o YES! The stochastic average gradient (SAG) algorithm:
o Randomly select ir from {1,2,..., N} and compute f(x").

tOéN
= NZ

e Memory: yf = Vfi(x") from the last ¢t where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]
e Assumes gradients of non-selected examples don’t change.
o Assumption becomes accurate as ||x*™! — xt|| — 0.

Convergence Rate of SAG

e If each f/ is L—continuous and f is strongly-convex,
with a; = 1/16L SAG has

E[f (x!) — f(x*)] < (1 — min {1‘6‘L 8N}>t c,

where

02
€= [F(=) — FO] + 10— x|

Convergence Rate of SAG

If each f/ is L—continuous and f is strongly-convex,
with a; = 1/16L SAG has

E[f(x?) — f(x*)] < (1 — min {1’6‘L 81N}> C,
where
02
€= [F() — AL + 10— |2

Linear convergence rate but only 1 gradient per iteration.
e For well-conditioned problems, constant reduction per pass:

1—i N< —1 = 0.8825
N < exp 5) =0 .

e For ill-conditioned problems, almost same as deterministic
method (but N times faster).

Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u =1/N:
2
o Gradient method has rate (ﬁ—/’j) = 0.99998.
o Accelerated gradient method has rate (1 - \/%) = 0.99761.

o SAG (N iterations) has rate (1 — min {4, gk)N = 0.88250.
2
o Fastest possible first-order method: (ﬁ—ﬂ) = 0.99048.

Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u =1/N:
2
o Gradient method has rate (ﬁ—/’j) = 0.99998.
o Accelerated gradient method has rate (1 - \/%) = 0.99761.

o SAG (N iterations) has rate (1 — min {7, SLN})N = 0.88250.
2
o Fastest possible first-order method: (ﬂ_ﬂ> = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, , and N).

Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u =1/N:
2
o Gradient method has rate (ﬁ—/’j) = 0.99998.
o Accelerated gradient method has rate (1 - \/%) = 0.99761.

o SAG (N iterations) has rate (1 — min {7, SLN})N = 0.88250.
2
o Fastest possible first-order method: (ﬂ_ﬂ> = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, , and N).

@ Number of f/ evaluations to reach e:

Rate of Convergence Comparison
@ Assume that N = 700000, L =0.25, u =1/N:
2
. L— -
e Gradient method has rate (ﬁ) = 0.99998.
o Accelerated gradient method has rate (1 - \/%) = 0.99761.
o SAG (N iterations) has rate (1 — min {4, gk)N = 0.88250.

2
o Fastest possible first-order method: (ﬂ_ﬂ> = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
o Deterministic gradient bound (for typical L, , and N).

@ Number of f/ evaluations to reach e:
e Stochastic: O(=(1/¢)).

L
n
o Gradient: O(Nﬁ log(1/€)).
o Accelerated: O(N\/%Iog(l/e)).

e SAG: O(max{N, /%}Iog(l/e)).

Objective minus Optimum

Comparing Deterministic and Stochatic Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641,
p = 47236)

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

Objective minus Optimum

SAG Compared to FG and SG Methods

@ quantum (n = 50000, p = 78) and rcvl (n = 697641,
p = 47236)

Effective Passes Effective Passes

Other Linearly-Convergent Stochastic Methods

@ Subsequent stochastic algorithms with linear rates:

e Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
o Incremental surrogate optimization [Mairal, 2013].
e Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,
2013, Zhang et al., 2013]
o SAGA [Defazio et al., 2014]

Other Linearly-Convergent Stochastic Methods

@ Subsequent stochastic algorithms with linear rates:
e Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]
o Incremental surrogate optimization [Mairal, 2013].
e Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al.,
2013, Zhang et al., 2013]
o SAGA [Defazio et al., 2014]

@ SVRG has a much lower memory requirement.

@ There arealso non-smooth extensions.

SAG Implementation Issues

e Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.
Compute f/(x).

d=d -y +f/(x).

yi = f{(x).

Yy«
X =X Nd.

SAG Implementation Issues

e Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.
Compute f/(x).

d=d -y +f/(x).

yi = f{(x).

Yy«
X =X Nd.

@ Practical variants of the basic algorithm allow:

o Regularization.

e Sparse gradients.

e Automatic step-size selection.
e Termination criterion.

o Acceleration [Lin et al., 2015].

SAG Implementation Issues

e Basic SAG algorithm:

while(1)

Sample i from {1,2,..., N}.
Compute f/(x).

d=d -y +f/(x).

yi = f{(x).

Yy«
X =X Nd.

@ Practical variants of the basic algorithm allow:

Regularization.

Sparse gradients.

Automatic step-size selection.

Termination criterion.

Acceleration [Lin et al., 2015].

Adaptive non-uniform sampling [Schmidt et al., 2013].

Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?
o Noncommutative arithmetic-geometric mean inequality

conjecture.
[Recht & Ré, 2012]

Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality
conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
o Performance is intermediate between IAG and SAG.

Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality
conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
o Performance is intermediate between IAG and SAG.

@ Can non-uniform sampling help?
e For classic SG methods, can only improve constants.

Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality
conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
o Performance is intermediate between IAG and SAG.

@ Can non-uniform sampling help?

e For classic SG methods, can only improve constants.
e For SAG, bias sampling towards Lipschitz constants L;,

IVEi(x) = V)| < Lillx = yll.

improves rate to depend on Lyean instead of Li.y.
(with bigger step size)

Reshuffling and Non-Uniform Sampling

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

o Noncommutative arithmetic-geometric mean inequality

conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
e Performance is intermediate between IAG and SAG.
@ Can non-uniform sampling help?

e For classic SG methods, can only improve constants.
e For SAG, bias sampling towards Lipschitz constants L;,

IVEi(x) = V)l < Lillx = yll.

improves rate to depend on Lyean instead of Li.y.
(with bigger step size)
e Adaptively estimate L; as you go.
o Slowly learns to ignore well-classified examples.

SAG with Adaptive Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

1 T
Objective minus Optimum

Objective minus Optimum

ALY OINARD

Effective Passes Effective Passes

@ Datasets where SAG had the worst relative performance.

SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Objective minus Optimum
5
Il
T

T
Objective minus Optimum

T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Adaptive non-uniform sampling helps a lot.

SAG with Mini-Batches

@ Reasons to use mini-batches with SAG:

@ Parallelize gradient calculation.
@ Decrease memory (only store gradient of the mini-batch).

SAG with Mini-Batches

@ Reasons to use mini-batches with SAG:

@ Parallelize gradient calculation.
@ Decrease memory (only store gradient of the mini-batch).
© Increase convergence rate.

(classic SG methods: only changes constant)

SAG with Mini-Batches

@ Reasons to use mini-batches with SAG:

@ Parallelize gradient calculation.
@ Decrease memory (only store gradient of the mini-batch).
© Increase convergence rate.

(classic SG methods: only changes constant)

@ Convergence rate depends on L for mini-batches:
o L(B) < L(i), possibly by up to |B].
o Allows bigger step-size, « = 1/L(B).
o Place examples in batches to make L(B) small.

Comparing SAG and SAGA

@ named-entity recognition tasks (CoNLL-2000)

==Yf== SAG-MS-hedge
~{)— SAGA-PL-hedge
SAGA-RP-hedge
ﬁ SAGA2-PL-Lmean
SAGA2-MS-hedge
10 T T T T
0 20 40 60 80 100

Objective minus Optimal
o
I

Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.

Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:
e Use mini-batches.

Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:

e Use mini-batches.
e Use structure in the objective:

o For fi(x) = L(a/ x), only need to store N values of a] x.

Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:

e Use mini-batches.

e Use structure in the objective:

o For fi(x) = L(a/ x), only need to store N values of a] x.
e For CRFs, only need to store marginals of parts.

10° B,

10" 4

Hybrig [oeg]
AlasclT

a
,

smo}

o 4

ective minus Optmal
g
|
3]
g

T T
Objective minus Opfimal

Ob
3
&
5
S
)
7
&3

07

10

(optical character and named-entity recognition tasks)

Minimizing Finite Sums: Dealing with the Memory

@ A major disadvantage of SAG is the memory requirement.
@ There are several ways to avoid this:

e Use mini-batches.
e Use structure in the objective:
o For fi(x) = L(a/ x), only need to store N values of a x.
e For CRFs, only need to store marginals of parts.
o

.

Hybrig. OEG

AfascT D)

o 4

ective minus Optmal
§)
5

T T
Objective minus Opfimal

Ob
4
5

07

(optical character and named-entity recognition tasks)
o If the above don’t work, use SVRG...

Stochastic Variance-Reduced Gradient

SVRG algorithm:
@ Start with xg
o fors=0,1,2..
° d - NZ/ 1 I()

o XV = x,

Stochastic Variance-Reduced Gradient

SVRG algorithm:
@ Start with xg

e fors=0,1,2.
°d _NZ/ 1I()
o x0 =x,

e fort=1,2,...m

e Randomly pick i € {1,2,..., N}
o xt=xt"1— at(f,-r'(xtfl) — £ (xs) + ds).

o xs41 = x* for random t € {1,2,..., m}.

Stochastic Variance-Reduced Gradient

SVRG algorithm:
@ Start with xg

e fors=0,1,2.
°d _NZ/ 1I()
o x0 =x,

e fort=1,2,...m

e Randomly pick i € {1,2,..., N}
o xt=xt"1— at(f,-r'(xtfl) — £ (xs) + ds).

o xs41 = x* for random t € {1,2,..., m}.
Requires 2 gradients per iteration and occasional full passes,

but only requires storing ds and xs.

Stochastic Variance-Reduced Gradient

SVRG algorithm:
@ Start with xg

o fors=0,1,2...
o di= 5 31 /()
o x0 =x,

o fort=1,2,...m
e Randomly pick i € {1,2,..., N}
o x'=x""1— (£ (x"") = f(x) + ds).

o xs41 = x* for random t € {1,2,..., m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs.

Practical issues similar to SAG (acceleration versions, automatic
step-size/termination, handles sparsity /regularization, non-uniform

sampling, mini-batches).

Conclusions
- Stochastic methods require 1 gradient per iteration but
slow convergence.

- Deterministic methods are fast but requires N gradients
per iteration.

- SAG, SVRG, and similar methods achieve faster
convergence rate with few gradient evaluations

