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Formal Definition

Tensors as Multi-Linear Maps
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Methods I m The tensor product of two vector spaces V and W over a
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field IF is another vector space over F. It is denoted

S V @k W or V® W when the field is understood.

ensor _o_n_cepts

e m If {v;} and {w;} are bases for V and W, then the set
{vi® w;} is a basis for V @ W

miIfS:V > Xand T: W — Y are linear maps, then the
tensor product of S and T is a linear map

ST VoW XY
defined by

(ST)(vaw)=5(v)® T(w)
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T o m With respect to a given basis, a tensor is a

and Befnition multidimensional array. E.g., a real N*-order tensor
X € Rivxbx-xIv \y rt. the standard basis is an
N-dimensional array where X ;, . i\ is the element at
index (il, f2, veny iN)

m The order of a tensor is the number of dimensions or
modes or indices required to uniquely identify an element

win

m So, a scalar is a 0—mode tensor, a vector is a 1—mode
tensor, and a matrix is a 2—mode tensor
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m Tensor fibers: higher-order analogue to matrix rows and
columns. For 3™-order tensor, fix all but one index.
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(a) Mode-1 (column) fibers: (b) Mode-2 (row) fibers: (¢) Mode-3 (tube) fibers:

Xijk Xick Xij:

Figure: Fibers of a 3-mode tensor
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m Tensor fibers: higher-order analogue to matrix rows and
columns. For 3™-order tensor, fix all but one index.
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(a) Mode-1 (column) fibers: (b) Mode-2 (row) fibers: (¢) Mode-3 (tube) fibers:

Xijk Xick Xij:

Figure: Fibers of a 3-mode tensor

m All fibers are treated as columns vectors by convention.
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m Tensor slices: two-dimensional sections of a tensor,
defined by fixing all but two indices:
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(a) Horizontal slices: X;.. (b) Lateral slices: X;. (c) Frontal slices: X.j (or
Xk)

Figure: Slices of a 3™-order tensor

m Slices can be horizontal, lateral, or frontal, corresponding
to the diagrams above.
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m The n-mode (matrix) product of a tensor
X € Rhxbkx-xIv \ith a matrix S € R?*" is denoted
X X p S and lives in Rll><..,><I,,,1><J><I,,+1><...><IN

m Elementwise,

In
(X X0 )it ooipsdsinitronins = D Xt izsomingSiin
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Xoi=|2 5| X.o=|14 17 U:H 2 2]
36 15 18
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S m Example. Consider the tensor X € R3*2*2  with frontal

slices
Tensor Concepts
and Definition 1 4 13 16 ]. 3 5
Xoi=12 5| X.o=114 17 U=12 5 6
3 6 15 18

m Then, the (1,1,1) element of the 1-mode matrix product
of X and U is:

L=3
(X x1 U)111 =) Xg11 X
i1=1

=1x14+2x3+3x5=22
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X € Rhxkx-XIv \yith 3 vector w € R" is denoted X o, w
and lives in ]Rll><...><I,,_1><In+1><.“><l,\,'

m Elementwise,
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Tenor Conepts m Example. Consider the tensor X € R3*2%2 as defined as
before, where X111 =1 and X121 = 4. Then, the (1,1)
element of the 2-mode vector product of X and w = [1 2]

IS
=2

(X2 W)11 = Xipiis X Wi,

=1

=1x1+4%x2=9
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and Definition tensor X(Ml, M2, M3) c RplXpQXp3 |S deflned as
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m A simpler case is with vectors v, w € RY. Then,

X(Lv,w) = Z viw T(:,j, 1) € RY
J,1€ld]

which is a multilinear combination of the mode-1 fibers
(columns) of the tensor X
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where ® is the vector (outer) product. The simple form of
(1) implies that
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Xll,lz,...,IN - ail i X ... X aiN
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N m An N-way tensor X is called rank one if it can be written

& Roedtr as the tensor product of N vectors, i.e.,
X =aMgadg.. oaM. (1)
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where ® is the vector (outer) product. The simple form of
(1) implies that

1 2 N
X,‘L,'Lm’,'N = al(l) X a,g) X ... X a,(-N)
m The following diagram exhibits a rank one 3-mode tensor
X=a®@b®c:

C
yan
e (—
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can be written as the sum of k rank-1 tensors, i.e.,
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i=1
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& Hosda m An order-3 tensor X € R9%9%d is said to have rank k if it

can be written as the sum of k rank-1 tensors, i.e.,

Tensor Concepts
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k
X = w;-a; ® b ®cj, wj € R, a,-,b,-,c,-ERd.
i=1

m Analogy to SVD where M =) . oju® v’ suggests
finding a decomposition of an arbitrary tensor into a
"spectrum” of rank-one components:

= B e el
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Motivation

Spectral

Methods Ii m Consider a 3™-order tensor of the form
= Roeder A=73".wja; ® a; ® a;. Considering A as a multilinear
map, we can represent its action on lower-order input
tensors (vectors and matrices) using its multilinear form:

Tensor Power
Method
Revisited

A(B,C,D):=> wi(BTa;)-(CTa)- (D" a).
i
m Now suppose A had orthonormal columns. Then,
M3(T, a1,a1) = > wi - (1T a;) - (8] a1)? = wya; + 0 + 0.
m This is analogous to an eigenvector of a matrix. If v is an
eigenvector of M we can write

Mv = M(I,v) = Av
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m We're extremely unlikely to encounter an empirical tensor
built from orthogonal components like this...

m But can learn a whitening transform using the second

&:Vt&::f’w moment, My = Zi wia; ® aj = Z,- Wiaia,'T-

m Whitening transforms the covariance matrix to the identity
matrix. The data is thereby decorrelated with unit
variance. The following diagram displays the action of a
whitening transform on data sampled from a bivariate
Gaussian:

Original Data , Decorrelate: Rotate by uT 5 Whiten: scale by o2
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Spectral

Methods Ii m The whitening transform is invertible so long as the
empirical second moment matrix has full column rank

m Given the whitening matrix W, we can whiten the
empirical third moment tensor by evaluating

Tensor Power
Method
Revisited

T= M3(W, W, W) = Z wi - (WTa,-)®3 = Z w; - VI®3
i ielk]

where {v;} is now an orthogonal basis

-

Tensor M3 Tensor T
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Tensor Power Method

Procedure

Mineemt m Start from a whitened tensor 7. Then:
Randomly initialize v. Evaluate the expression
T, v,v)
T (v, v )l
Vet until convergence to obtain v with eigenvalue A

eviied Deflate T = T — Av ® v ® v. Store eigenvalue/eigenvector
pair, and then go to 1.

m This leads to the algorithm for recovering the columns of a
parameter matrix by representing its columns as moments:

V=

Input: Tensor T'= 3=,y Niu®?
4

Whitening procedure (Procedure 5)
4
SVD-based Initialization (Procedure 8)
4
Tensor Power Method (Algorithm 7 )
4
Output: {u;}icp



Summary of Method of Moments

Spectral
Methods Il

m Tensor factorization is NP-hard in general

Tensor Power
Method
Revisited


newport.eecs.uci.edu/anandkumar/MLSS.html

Summary of Method of Moments

Spectral
Methods Il

G. Roeder

m Tensor factorization is NP-hard in general

Tensor Power

Method m For orthogonal tensors, factorization is polynomial in
REVEE] . .
sample size and number of operations


newport.eecs.uci.edu/anandkumar/MLSS.html

Summary of Method of Moments

Spectral
Methods Il

G. Roeder

m Tensor factorization is NP-hard in general
thd: m For orthogonal tensors, factorization is polynomial in
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m Unlike EM algorithm or variational Bayes, this method
converges to the global optimum
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m Tensor factorization is NP-hard in general
E/Ithtdzw m For orthogonal tensors, factorization is polynomial in
sample size and number of operations
m Unlike EM algorithm or variational Bayes, this method
converges to the global optimum
m For a more detailed analysis and how to frame any latent

variable model using this method, see
newport.eecs.uci.edu/anandkumar/MLSS.html
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on finding optimal weights for a two-layer neural network,
with notes on how to generalize to more complex
architectures:
https://arxiv.org/pdf/1506.08473.pdf
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m Very recent work (last arXiv.org datestamp: Jan 11 2016)
on finding optimal weights for a two-layer neural network,
with notes on how to generalize to more complex

architectures:
https://arxiv.org/pdf/1506.08473.pdf

FN,JL:IFQTTJUM; m Majid Janzamin, Hanie Sedghi, and Anima Anandkumar.

Beating the Perils of Non-Convexity: Guaranteed Training
of Neural Networks using Tensor Methods.


https://arxiv.org/pdf/1506.08473.pdf
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@ Focdls m Target netwo[k is a label-generating model with
architecture f(x) := E[j|x] = A{ 0(Aj x + by) + ba:

Neural Network
Learning Using
Feature Tensors

(NNLIFT)

m Must assume input pdf p(x) is known "sufficiently well”
for learning (or can be estimated using unsupervised
methods)
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m Key insight: there exists a transformation ¢(+) of the input
{(xi,yi)} that captures the relationship between the
parameter matrices A; and A, and the input

m The transformation generates feature tensors that can be
factorized using the method of moments

m mi"-order Score function, defined as (Janzamin et al.
ey )
. S (X) — (_1)m v§<m)P(X)

" p(x)

where p(x) is the pdf of the random vector x € RY and
V)((m) is the m®" order derivative operator
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m The 1st order score function is the normalized gradient of
the log of the input density function

m This encodes variations in the input distribution p(x). By
looking at the gradient of the distribution you get an idea
of where there is a large change occurring in the

Neural Netvork distribution

Learning Using
Feature Tensors
(NNLIFT)

m The correlation E[y - S3(x)] between the third-order score
function S3(x) and the output y then has a particularly
useful form, because the x averages out in expectation.
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m In Lemma 6 of the paper, authors prove that the rank-1
components of the third order tensor E[y - S3(x)] are the
columns of the weight matrix Aj:
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E[7 - S3(x)] = Y Aj- (A1) @ (A1)j @ (Ar); € RI*Ix
j=1
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m In Lemma 6 of the paper, authors prove that the rank-1
components of the third order tensor E[y - S3(x)] are the
columns of the weight matrix Aj:

Neural Network
Learning Using
Feature Tensors
(NNLIFT)

k
E[7 - S3(x)] = Y Aj- (A1) @ (A1)j @ (Ar); € RI*Ix
j=1

m It follows that the columns of A; are recoverable using the
method of moments, with optimal convergence guarantees
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The remainder of the steps can to the following algorithm:

Algorithm 1 NN-LIFT (Neural Network LearnIng using Feature Tensors)

input Labeled samples {(zi,y;) : i € [n]}, parameter €;, parameter A.

input Third order score function S3(x) of the input z; see Equation (8) for the definition.
1: Compute T := % Zie[n] Yi - S3(x5).

Neural Network
Learning Using
Feature Tensors
(NNLIFT)

: {(Al)j}je[k] = tensor decomposition(T); see Section 3.2 and Appendix B for details.

2
3 by = Fourier method({ (2, ;) : i € [}, A, €); see Procedure 2.

4: (ag,b2) = Ridge regression({(z:,ys) : i € [n]}, A1, b1, A); see Procedure 3.
5: return Ay, as, by, bo.
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m Tensorial representations of Latent Variable Models
promise to overcome shortcomings of EM algorithm and
variational Bayes

m Tensors algebra involves non-trivial but conceptually
straightforward operations

m These methods may point to a new direction in machine
Summary learning research that gives guarantees in unsupervised
learning
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