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Coin toss: point estimates for θ
Probability model

Consider the experiment of tossing a coin n times. Each toss results
in heads with probability θ and tails with probability 1− θ

Let Y be a random variable denoting number of observed heads in n
coin tosses. Then, we can model Y ∼ Bin(n, θ), with probability mass
function

p(Y = y | θ) =

(
n

y

)
θy (1− θ)n−y (1)

We want to estimate the parameter θ
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Coin toss: point estimates for θ
Maximum Likelihood

By interpreting p(Y = y |θ) as a function of θ rather than y , we get
the likelihood function for θ

Let ``(θ|y) := log p(y |θ), the log-likelihood. Then,

θ̂ML = argmax
θ

``(θ|y) = argmax
θ

ylog(θ) + (n − y)log(1− θ) (2)

Since the log likelihood is a concave function of θ,

argmax
θ

`(θ|y)⇔ 0 =
∂`(θ|y)

∂θ

∣∣∣∣
θ̂ML

⇔ 0 =
y

θ̂ML

− n − y

1− θ̂ML

⇔ θ̂ML =
y

n

(3)
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Coin toss: point estimates for θ
Point estimate for θ: Maximum Likelihood

What if sample size is small?

Asymptotic result that this approaches true parameter
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Coin toss: point estimates for θ
Maximum A Posteriori

Alternative analysis: reverse the conditioning with Bayes’ Theorem:

p(θ|y) =
p(y |θ)p(θ)

p(y)
(4)

Lets us encode our prior beliefs or knowledge about θ in a prior
distribution for the parameter, p(θ)

Recall that if p(y |θ) is in the exponential family, there exists a
conjugate prior p(θ) s.t. if p(θ) ∈ F , then p(y |θ)p(θ) ∈ F

Saw last time that binomial is in the exponential family, and
θ ∼ Beta(α, β) is a conjugate prior.

p(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (5)
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Coin toss: point estimates for θ
Maximum A Posteriori

Moreover, for any given realization y of Y, the marginal distribution
p(y) =

∫
p(y |θ′)p(θ′)dθ′ is a constant

Thus, p(θ|y) ∝ p(y |θ)p(θ)p(y) so that

θ̂MAP = argmax
θ

p(θ|y)

= argmax
θ

p(y |θ)p(θ)

= argmax
θ

log p(y |θ)p(θ)

By evaluating the first partial derivative w.r.t θ and setting to 0 at
θ̂MAP we can derive

θ̂MAP =
y + α− 1

n + β − 1 + α− 1
(6)
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Coin toss: point estimates for θ
Point estimate for θ: Choosing α, β

The point estimate for θ̂MAP shows choices of α and β correspond to
having already seen prior data. Can encode strength of prior belief
using these parameters.

Can also choose uninformative prior: Jeffreys’ prior. For
beta-binomial model, corresponds to (α, β) = ( 1

2 ,
1
2 ).

Deriving an analytic form for the posterior is possible also if the prior
is conjugate. We saw last week that for a single Binomial experiment
with a conjugate Beta, p(θ|y) ∼ Beta(α + y − 1, β + n − y − 1)
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Hierarchical Models
Introduction

Putting a prior on the parameter θ was pretty useful

We ended up with two parameters α and β we could choose to
formally encode our knowledge about the random process

Often, though, we want to go one step further: put a prior on the
prior, rather than treating α and β as constants

Then, θ is a sample from a population distribution
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Hierarchical Models
Introduction

Example: now we have information available at different ”levels” of
the observational units

At each level the observational units must be exchangeable

Informally, a joint probability distribution p(y1, ..., yn) is exchangeable
if the indices on the yi can be shuffled without changing the
distribution

Then, a Hierarchical Bayesian model introduces an additional prior
distribution for each level of observational unit, allowing additional
unobserved parameters to explain some dependencies in the model
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Hierarchical Models
Introduction

Example

A clinical trial of a new cancer drug has been designed to compare the
five-year survival probability in a population given the new drug to the
five-year survival probability in a population under a standard treatment
(Gelman et al. [2014]).

Suppose the two drugs are administered in separate randomized
experiments to patients in different cities.

Within each city, the patients can be considered exchangeable

The results from different hospitals can also be considered
exchangeable

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016



Hierarchical Models
Introduction

Example

A clinical trial of a new cancer drug has been designed to compare the
five-year survival probability in a population given the new drug to the
five-year survival probability in a population under a standard treatment
(Gelman et al. [2014]).

Suppose the two drugs are administered in separate randomized
experiments to patients in different cities.

Within each city, the patients can be considered exchangeable

The results from different hospitals can also be considered
exchangeable

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016



Hierarchical Models
Introduction

Example

A clinical trial of a new cancer drug has been designed to compare the
five-year survival probability in a population given the new drug to the
five-year survival probability in a population under a standard treatment
(Gelman et al. [2014]).

Suppose the two drugs are administered in separate randomized
experiments to patients in different cities.

Within each city, the patients can be considered exchangeable

The results from different hospitals can also be considered
exchangeable

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016



Hierarchical Models
Introduction

Terminology note:

With hierarchical Bayes, we have one set of parameters θi to model
the survival probability of the patients yij in hospital i , and another
set of parameters φ to model the random process governing the
generation of θj

Hence, θi are themselves given a probabilistic specification in terms of
hyperparameters φ through a hyperprior p(φ)
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Motivating example: Incidence of tumors in rodents
Adapted from Gelman et al. (2014)

Let’s develop a Hierarchical model using the beta-binomial Bayesian
approach seen so far

Example

Suppose we have the results of a clinical study of a drug in which
rodents were exposed to either a dose of the drug or a control
treatment (no dose)

4 out of 14 rodents in the control group developed tumors

We want to estimate θ, the probability that the rodents in the control
group developed a tumor given no dose of the drug
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Motivating example: Incidence of tumors in rodents
Data

We also have the following data about the incidence of this kind of tumor
in the control groups of other studies:

Figure: Gelman et al. 2014 p.102
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Motivating example: Incidence of tumors in rodents
Bayesian analysis: setup

Including the current experimental results, we have information on 71
random variables θ1, ..., θ71

We can model the current and historical proportions as a random
sample from some unknown population distribution: each yj is
independent binomial data, given the sample sizes nj and
experiment-specific θj .

Each θj is in turn generated by a random process governed by a
population distribution that depends on the parameters α and β
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Motivating example: Incidence of tumors in rodents
Bayesian analysis: model

This relationship can be depicted as graphically as

Figure: Hierarchical model (Gelman et al. 2014 p.103)
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Motivating example: Incidence of tumors in rodents
Bayesian analysis: probability model

Formally, posterior distribution is now of the vector (θ, α, β). The
joint prior distribution is

p(θ, α, β) = p(α, β)p(θ|α, β) (7)

and the joint posterior distribution is

p(θ, α, β|y) ∝ p(θ, α, β)p(y |θ, α, β)

= p(α, β)p(θ|α, β)p(y |θ, α, β)

= p(α, β)p(θ|α, β)p(y |θ)

(8)
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Motivating example: Incidence of tumors in rodents
Bayesian analysis: joint posterior density

Since the beta prior is conjugate, we can derive the joint posterior
distribution analytically

Each yj is conditionally independent of the hyperparameters α, β
given θj . Hence, the likelihood function is still

p(y |θ, α, β) = p(y |θ) = p(y1, y2, ..., yJ |θ1, θ2, ..., θJ)

=
J∏

j=1

p(yj |θj) =
J∏

j=1

(
nj
yj

)
θ
yj
j (1− θj)nj−yj

(9)

Now we also have a population distribution p(θ|α, β):

p(θ|α, β) = p(θ1, θ2, ..., θJ |α, β)

=
J∏

j=1

Γ(α + β)

Γ(α)Γ(β)
θα−1
j (1− θj)β−1 (10)
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Motivating example: Incidence of tumors in rodents
Bayesian analysis: joint posterior density

Then, using equations (8) and (9), the unnormalized joint posterior
distribution p(θ, α, β|y) is

p(α, β)
J∏

j=1

Γ(α + β)

Γ(α)Γ(β)
θα−1
j (1− θj)β−1

J∏
j=1

θ
yj
j (1− θj)nj−yj . (11)

We can also determine analytically the conditional posterior density of
θ = (θ1, θ2, ..., θJ):

p(θ|α, β, y) =
J∏

j=1

Γ(α + β + nj)

Γ(α + yj)Γ(β + nj − yj)
θ
α+yj−1
j (1− θj)β+nj−yj−1.

(12)
Note that equation (11), the conditional posterior, is now a function
of (α, β). Each θj depends on the hyperparameters of the hyperprior
p(α, β).
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p(θ|α, β, y) =
J∏

j=1

Γ(α + β + nj)

Γ(α + yj)Γ(β + nj − yj)
θ
α+yj−1
j (1− θj)β+nj−yj−1.

(12)
Note that equation (11), the conditional posterior, is now a function
of (α, β). Each θj depends on the hyperparameters of the hyperprior
p(α, β).
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Motivating example: Incidence of tumors in rodents
Bayesian analysis: marginal posterior distribution of (α, β)

To compute the marginal posterior density, observe that if we condition on
y , equation (7) is equivalent to

p(α, β|y) =
p(θ, α, β|y)

p(θ|α, β, y)
(13)

which are equations (10) and (1) on the previous slide. Hence,

p(α, β|y) = p(α, β)

∏J
j=1

Γ(α+β)
Γ(α)Γ(β)θ

α−1
j (1− θj)β−1

∏J
j=1 θ

yj
j (1− θj)nj−yj∏J

j=1
Γ(α+β+nj )

Γ(α+yj )Γ(β+nj−yj )θ
α+yj−1
j (1− θj)β+nj−yj−1

= p(α, β)
J∏

j=1

Γ(α + β)

Γ(α)Γ(β)

Γ(α + yj)Γ(β + nj − yj)

Γ(α + β + nj)
,

(14)
which is computationally tractable, given a prior for (α, β).
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Summary: beta-binomial hierarchical model

We started by wanting to understand the true proportion of rodents
in the control group of a clinical study that developed a tumor.

By modelling the relationship between different trials hierarchically,
we were able to bring our uncertainty about the hyperparameters
(α, β) into the model

Using analytical methods, we developed a model that, given a
suitable population prior and the method of simulating draws from
the distribution in order to estimate (α, β).
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Bayesian Hierarchical Models
Extension

In general, if θj is the population parameter for an observable x , and
φ be a hyperprior distribution

p(θ, φ|x) =
p(x |θ, φ)p(θ, φ)

p(x)
=

p(x |θ)p(θ|φ)p(φ)

p(x)
(15)

The models can be extended with more levels by adding hyperpriors
and hyperparameter vectors, leading to the factored form:

p(θ, φ, ψ|x) =
p(x |θ)p(θ|φ)p(φ|ψ)p(ψ)

p(x)
(16)
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Hierarchical models
Application to clinical study
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Bayes Factors
Shortcut for Marginal Likelihood in Conjugate Case
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Bayesian Model Selection
Problem definition

The model selection problem:

Given a set of models (i.e., families of parametric distributions) of different
complexity, how should we choose the best one?
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Bayesian Model Selection
Bayesian solution (Adapted from Murphy 2012)

Bayesian approach: compare the posterior over models Hk ∈ H

p(Hk |D) =
p(D|Hk)p(Hk)∑
H′∈H p(H ′,D)

(17)

then, select MAP model as best

ĤMAP = argmax
H′∈H

p(H ′|D). (18)

If we adopt a uniform prior to represent our uncertainty about the
choice of models s.t. p(Hk) ∼ U(0, 1)⇒ p(Hk) ∝ 1, then

ĤMAP = argmax
H′∈H

p(H ′|D)⇔ argmax
H′∈H

p(D|H ′) (19)

and so the problem reduces to choosing the model which maximizes
the marginal likelihood (also called the ”evidence”):

p(D|Hk) =

∫
p(D|θk ,Hk)p(θk |Hk)dθk (20)
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ĤMAP = argmax
H′∈H

p(H ′|D)⇔ argmax
H′∈H

p(D|H ′) (19)

and so the problem reduces to choosing the model which maximizes
the marginal likelihood (also called the ”evidence”):

p(D|Hk) =

∫
p(D|θk ,Hk)p(θk |Hk)dθk (20)

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016



Outline

1 Hierarchical Bayesian Modelling
Coin toss redux: point estimates for θ
Hierarchical models
Application to clinical study

2 Bayesian Model Selection
Introduction
Bayes Factors
Shortcut for Marginal Likelihood in Conjugate Case

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016



Bayes Factors
Adapted from Kass and Raftery (1995)

Bayes Factors are a natural way to compare models using marginal
likelihoods

In simplest case, we have two hypotheses H = {H1,H2} about the
random process which generated D according to distributions
p(D|H1), p(D|H2)

Recall the odds representation of probability: it gives a structure we
can use in model selection

odds =
proportion of successes

proportion of failures
=

probability

1− probability
(21)
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Bayes Factors
Derivation

Bayes’ theorem says

p(Hk |D) =
p(D|Hk)p(Hk)∑

h′∈H p(D)|Hh′)p(Hh′)
(22)

Since p(H1|D) = 1− p(H2|D) (in the 2-hypothesis case),

odds(H1|D) =
p(H1|D)

p(H2|D)
=

p(D|H1)

p(D|H2)

p(H1)

p(H2)

posterior odds = Bayes factor x prior odds

(23)
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Bayes Factors

Prior odds are transformed into the posterior odds by the ratio of
marginal likelihoods. The Bayes factor for model H1 against H2 is

B12 =
p(D|H1)

p(D|H2)
(24)

Bayes factor is a summary of the evidence provided by the data in
favour of one hypothesis over another

Can interpret Bayes factors Jeffreys’ scale of evidence:

Bjk : Evidence against Hk :
1 to 3.2 Not worth more than a bare mention

3.2 to 10 Substantial
10 to 100 Strong

100 or above Decisive
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Bayes Factors
Coin toss example (Adapted from Arnaud)

Suppose you toss a coin 6 times and observe 6 heads.

If θ is the probability of getting heads, can test H1 : θ = 1
2 against

H2 : θ ∼ Unif ( 1
2 , 1]

Then, the Bayes factor for fair against biased is

B12 =
p(D|H1)

p(D|H2)
=

∫
p(D|θ1,H1)p(θ1|H1)dθ1∫
p(D|θ2,H2)p(θ2|H2)dθ2

=

1
2

∫ 1
1
2
θx(1− θ)6−xdθ

( 1
2 )x(1− 1

2 )6−x

=

1
2

∫ 1
1
2
θ6dθ

( 1
2 )6

≈ 4.535.
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Bayes Factors
Gaussian mean example (Adapted from Arnaud)

Suppose we have a random variable X |µ, σ2 ∼ N (µ, σ2) where σ2 is
known but µ is unknown.

Our two hypotheses are H1 : µ = 0 vs H2 : µ ∼ N (ξ, τ2)

Then, the Bayes factor for H1 against H2 is

B12 =
p(D|H1)

p(D|H2)
=

∫
N (x |µ, σ2)N (µ|ξ, τ2)dµ∫
N (x |µ, σ2)δ0(µ)dµ

=

∫
1√

2πσ2
exp
{

(x−µ)2

2σ2

}
1√

2πτ2
exp
{

(µ−ξ)2

2τ2

}
dµ

1√
2πσ2

exp
{

x2

2σ2

}
=

σ2

√
σ2 + τ2

exp
{ τ2x2

2σ2(σ2 + τ2)

}
.

(25)
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Bayes Factors
Key points

Bayes factors allow you to compare models with different parameter
spaces: the parameters are marginalized out in the integral

Thus unlike MLE model comparison methods, Bayes factors do not
favour more complex models. ”Built-in” protection against overfitting

Recall AIC is -2 ( log ( likelihood )) + 2 K, where K is number of
parameters in model
Since based on ML estimate of parameters, which are prone to overfit,
AIC is biased towards more complex models and must be adjusted by
the parameter K

Bayes factors are sensitive to the prior. In Gaussian examples, as
τ →∞, B12 → 0 regardless of the data x. If prior is vague on a
hypothesis, Bayes factor selection will not favour that hypothesis.
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Computing Marginal Likelihood
(Adapted from Murphy 2013)

Suppose we write the prior as

p(θ) =
q(θ)

Z0

(
=
θα−1(1− θ)β−1

B(α, β)

)
, (26)

the likelihood as

p(D|θ) =
q(D|θ)

Z`

(
=
θy (1− θ)n−y(n

y

)−1

)
, (27)

and the posterior as

p(θ|D) =
q(θ|D)

ZN

(
=
θα+y−1(1− θ)β+n−y−1

B(α + y , β + n − y)

)
. (28)
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Computing Marginal Likelihood
(Adapted from Murphy 2013)

Then:

p(θ|D) =
p(D|θ)p(θ)

p(D)

⇔ q(θ|D)

ZN
=

q(D|θ)q(θ)

Z`Z0p(D)

⇔ p(D) =
ZN

Z0Z`

(
=

(
n

y

)
B(α + y , β + n − y)

B(α, β)

) (29)

The computation reduces to a ratio of normalizing constants in this special
case.

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016



References I

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, Donald B. Rubin
Bayesian Data Analysis
Chapman Hall/CRC, 2014.

Kevin Murphy
Machine Learning: A Probabilistic Perspective
MIT Press, 2013.

Arnaud Doucet
STAT 535C: Statistical Computing
Course lecture slides (2009)
Accessed 14 January 2016 from
http://www.cs.ubc.ca/˜arnaud/stat535.html

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016



References II

Robert E. Kass; Adrian E. Raftery
Bayes Factors
Journal of the American Statistical Association, Vol. 90, No. 430
773-795, 1995.

Geoffrey Roeder Hierarchical Models & Bayesian Model Selection Jan. 20, 2016


	Hierarchical Bayesian Modelling
	Coin toss redux: point estimates for 
	Hierarchical models
	Application to clinical study

	Bayesian Model Selection
	Introduction
	Bayes Factors
	Shortcut for Marginal Likelihood in Conjugate Case

	Appendix

