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Problem Formulation

Our main goal is to solve a problem of the form:

in f
mig )

where f : R — R and f is differentiable.
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Definitions

m In order to solve the problem above, we can use a technique called
gradient descent. The algorithm involves the following iteration:

Xk+1 = Xk — )\Vf(Xk), k>0,A>0

m For the duration of the talk, we will assume that f has a minimum,
and will denote f* as the minimum value of f.
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Definitions

m Convexity:
f(y) 2 FO) + (VE(x),y —=x) Vx, ¥

m The function f is bounded below by its linear approximations.

m Smoothness:

y) < FO)+ (VG0 —x) + 2lly —x2 xy

m The function f can be bounded above by a quadratic at every point.
m We call L the Lipschitz constant.
m Also implies that:

IVE(x) = VW)l < Lix =yl Vxy
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Motivation

Some issues that can arise with GD:
m Many functions do not satisfy smoothness globally.

m Figuring out the best stepsize A can be challenging, requiring
guessing many stepsizes.

m Robustness issues: Picking too large of a stepsize can lead to
divergence.

m GD is too slow: Even if L is finite, this may not be a good
representation of local smoothness, and so we pick too small of
stepsize.
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Background

Ways that previous work get around some of these issues, among many:

m Do a line search, which involves picking a stepsize \x so that a
condition such as the following holds:

f(Xk — )\ka(Xk)) < f(Xk) - C)\kHVf(Xk)Hz

m If f is costly to compute, this won't be very efficient.

m Use an adaptive Polyak’s stepsize:

f(xx)—f*

A= ke —__
IV £ (xi)1?

m This requires knowing f*, which isn't always possible.
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Key |deas

The paper states two key ideas to effectively automate gradient descent:
m Don't increase the step size too quickly.
m Don’t overstep the local curvature.

In particular:

m Pick the stepsize to be an estimate of the inverse local Lipschitz
constant.

m Why? The global Lipschitz constant may not be a good estimate of
the local curvature of the function being minimized.
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Stepsize Selection

The main idea of the paper is to use a stepsize Ax so that the following
two inequalities hold:

A < A1V (14 0k-1)

[l Xk — XK1l
e <
K= 2V () — Vo)

where 0, = /\i\kf

m The stepsize picked in the current iteration uses the stepsize, iterates,
and gradients from the previous step.

m The idea here is using information from both the current and previous
step can allow one to estimate the local curvature.
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Adaptive GD Algorithm

Algorithm 1 Adaptive gradient descent

1: Input: 2° € R, Ay > 0, 6y = +oc
2zt =2 — AV f(20)
3: for k=1,2,... do
lak —z*-1]]
4 Ak :nun{‘/lJrB',t 1A k—1s z||Vf(:r Vf(z"‘ T ”}
ZFH = gk — A\ Y f(aF)
A

o

. _ M
6: O = Sy
7: end for

B The same as GD with a more elaborate stepsize scheme.

m Line 4 is where the estimation of the local Lipschitz constant occurs.
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Definition

m Strong Convexity:

F(y) 2 F() + (V) y =x)+ Slly = x| ¥x,y

m The function f can be bounded below by a quadratic at every point
(the same as the smoothness definition but a lower bound instead).
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Adaptive Accelerated GD Algorithm

Algorithm 2 Adaptive accelerated gradient descent

1: Tnput: 2 € BY X >0, Ay > 0, fp = By = 400
2yt =2l =2 — A Vf(")
3 for k=1,2,.. . do

i l,i— k_ k=1
4 A= mm{\ 1+ —)q 1: W‘[?‘—‘Tf[)ul'_l}
5: \;—mm{\1+—"\; 1, EL%H[.L’;,-‘A}

luu— /A
1'a\1+\, A
7 u“ =2F — NV ("
PR S J¢+1_ 7MJJ\-H U}.-)
[ et e v
10: end for

m More steps involved in the accelerated variant, but line 4 is almost
the same as in the standard variant.

m Can think of this variant as using momentum for faster convergence.

m Line 5 attempts to estimate the local strong convexity constant.
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Adaptive SGD Algorithm

m The paper goes further and discusses a stochastic variant of their idea.

m Missing theory for this variant.
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Experimental Results
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Figure 1: Results for the logistic regression problem.

m We see that the adaptive method performs better for the dataset used
in the left, but not the right for the logistic regression problem.
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Experimental Results
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Figure 2: Results for matrix factorization. The objective is neither convex nor smooth.

m The adaptive method works better for the matrix factorization
problem (for varying ranks). The accelerated variant is even faster, as
expected.
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Experimental Results
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Figure 3: Results for the non-smooth subproblem from cubic regularization.

m Again the adaptive method performs the best, and this is the case for
varying levels of regularization.
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Experimental Results

— SGD

9 100 —e— SGDm
. Wl.n 4l —a— Adam

107 —+— ADSGD, (146, 1,05/L;)
% — SeD —— AdSGD, (1+6; 1/50,1/Ly)

—+— AdSGD, (1+6; 1,05/L)

—e— AdSGD, (1+0; 1/10,1/L;)
—— AdSGD, (1+0;.1/50,1/Lx)

Test accuracy
Train loss
=
S

o 103
8 —+— ASGD, (1 + 6,1, 0.5/Ly)
—— ASGD, (1 +6,-1/50, /L) 10
8 0 50 100 150 200 250 0 50 100 150 200 250 o 50 100 150 200 250
Epoch Epoch Epoch
(a) Test accuracy (b) Stepsize (c) Train loss

Figure 5: Results for training ResNet-18 on Cifar10. Labels for AAGD correspond to how Ay
was estimated.

m The adaptive SGD method gives the best test loss, and comparable
training loss to the other methods.
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Experimental Results
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Figure 6: Results for training DenseNet-121 on Cifar10.

m Same as before, the adaptive SGD method gives the best test loss,
and comparable training loss to the other methods.
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Future Research Directions

Some future directions to extend this paper:
m Handing the case where f is non-convex.
m This paper assumes convexity in their proofs. It's not clear how to
extend their methods beyond this case.
m Their theoretical rates are the same as GD (up to constants).
However, experimentally they show that their method often performs
better than GD, and it's unclear why.

m Better theoretical results for both the accelerated and stochastic
variants of their algorithm.
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Finale

Thank you for listening!

Questions?
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