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MLRG Fall 2022 theme: Transformers

Papers

� Kaplan et al. (2020) Scaling Laws for Neural Language Models

� Abnar et al. (2021) Exploring the Limits of Large Scale

Pre-training
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MLRG Fall 2022 theme: Transformers

Previously

� Transformers and attention mechanisms

� Language models (GPT-3)

� Image recognition

� Chain of thought prompting

� CLIP
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MLRG Fall 2022 theme: Transformers
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MLRG Fall 2022 theme: Transformers

Today

� Bigger =⇒ better?

� Limitations

� Generalization
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Scale and transfer learning

Bommasani et al. 2021
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Foundation models

“A foundation model is any model that is trained on broad data ... that can be

adapted (e.g., fine-tuned) to a wide range of downstream tasks; current

examples include BERT [Devlin et al. 2019], GPT-3 [Brown et al. 2020], and

CLIP [Radford et al. 2021].”

Bommasani et al. 2021
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Foundation models

Bommasani et al. 2021
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Generalizability

“the feature of foundation models that has been most impactful in NLP is not

their raw generation abilities but their surprising generality and adaptability : a

single foundation model can be adapted in different ways in order to achieve

many linguistic tasks”

Bommasani et al. 2021
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Generalizability

Bommasani et al. 2021
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Scaling

� Expressivity

� Scalability

� Multimodality

� Memory

� Compositionality

Bommasani et al. 2021
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Scaling

“For foundation models to effectively fit the complex and high-dimensional

distribution of images or text, they should thereby be scalable across all

dimensions: including both models’ depth and width as well as their training

time, number of parameters, and the amount of data they could process.”

Bommasani et al. 2021
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Neural scaling laws

Resources

� N. Number of model parameters (excluding all vocabulary and positional

embeddings)

� D. Dataset size in terms of number of tokens.

� C . Amount of compute in training (PF days)

Also looks at “critical batch size” Bcrit
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Neural scaling laws

Proposed model

L(X ) ∝
(

1

X

)αX

where X is C , D or N; αX is its power-law exponent; L is cross entropy loss.

Experimentally solve for XC and αX

L(X ) = (XC/X )αX

where XC and αX are constants.

Kaplan et al. 2020
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Neural scaling laws

No fundamental interpretation because they change with a change in

vocabulary/ language.

Kaplan et al. 2020
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Neural scaling laws

Some findings

� “Smooth power laws”

� “Performance depends strongly on scale, weakly on model shape”

� “Large models are more sample-efficient than small models”

� “Transfer improves with test performance”
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Smooth power laws

Kaplan et al. 2020

16



Performance depends weakly on model shape

Kaplan et al. 2020
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Large models are more sample-efficient

Kaplan et al. 2020
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Transfer improves with test performance

Kaplan et al. 2020
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Neural scaling laws

“We observe no signs of deviation from straight power-law trends at large values

of compute, data, or model size. Our trends must eventually level off, though,

since natural language has non–zero entropy.”

Kaplan et al. 2020
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Exploring the limits of large scale pre-training

“Recent impressive progress on transfer and few-shot learning suggests an

emerging direction that scaling up models and training them on a huge corpus of

data is the main obstacle towards better performance on downstream tasks with

less or no data.”

� vision transformers [Zhai et al. 2021]

� transfer learning [Hernandez et al. 2021]

Abnar et al. 2021
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Exploring the limits of large scale pre-training

� 4800 (imported) experiments with different configurations

� controlled experiments: increase data size, model size and training time to

explore DS-vs-US accuracy

� most experiments not trained for the purpose of this paper

� aggregate different vision transformer, MLP mixer and ResNet models from

different researchers in a meta-study

� focuses on downstream vs upstream accuracy instead of directly on the

impact of scaling

Abnar et al. 2021
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Exploring the limits of large scale pre-training

Proposed model inspired by Kaplan et al.

eDS = k(eUS)
α+eIR

where eDS , eUS , eIR refers to DS, US and irreducible errors respectively. k and α

are constants.

Plotting in log scaling gives a straight line only when eIR is zero.

Error is 1 - accuracy.
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Exploring the limits of large scale pre-training

1500 vision transformers, 1400 MLP-mixers, 16 ResNets

Abnar et al. 2021
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Exploring the limits of large scale pre-training

1400 vision transformers, 90 MLP mixers, 233 ResNets

Abnar et al. 2021
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Exploring the limits of large scale pre-training

More than 3000 vision transformers, logit scaling for downstream accuracy

Abnar et al. 2021
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Exploring the limits of large scale pre-training

Saturation point

� “the value of downstream accuracy as upstream accuracy reaches 1.0”

� where “it is not worth scaling up data size, compute or model size to

improve US accuracy as the effect on DS accuracy is negligible”

� increasing pre-training effort may lead to downstream performance

reaching a saturation point below its Bayes error

Abnar et al. 2021
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Exploring the limits of large scale pre-training

“[Saturation] is about the relationship between the US and DS tasks”

Abnar et al. 2021
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Exploring the limits of large scale pre-training

� “optimal layer is not the last one”

� “pre-trained network lacks the fine-grained features required to perform

well on DS”

Abnar et al. 2021
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Exploring the limits of large scale pre-training

Abnar et al. 2021
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Exploring the limits of large scale pre-training

“contrary to the common narrative, scaling does not lead to a one-model-fits-all

solution”

“when investing in scaling in terms of data, model parameters and compute, we

should think of an additional axis which is data diversity.”

Abnar et al. 2021
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