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e Kaplan et al. (2020) Scaling Laws for Neural Language Models

e Abnar et al. (2021) Exploring the Limits of Large Scale
Pre-training
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Previously

e Transformers and attention mechanisms
e Language models (GPT-3)

e Image recognition

e Chain of thought prompting

e CLIP
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Today

e Bigger — better?
e Limitations

e Generalization
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Fig. 1. The story of Al has been one of increasing emergence and homogenization. With the introduction of
machine learning, how a task is performed emerges (is inferred automatically) from examples; with deep
learning, the high-level features used for prediction emerge; and with foundation models, even advanced
functionalities such as in-context learning emerge. At the same time, machine learning homogenizes learning
algorithms (e.g., logistic regression), deep learning homogenizes model architectures (e.g., Convolutional
Neural Networks), and foundation models homogenizes the model itself (e.g., GPT-3).

Bommasani et al. 2021
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Foundation models 2% DRTISH GOUUTIDN

“A foundation model is any model that is trained on broad data ... that can be
adapted (e.g., fine-tuned) to a wide range of downstream tasks; current
examples include BERT [Devlin et al. 2019], GPT-3 [Brown et al. 2020], and
CLIP [Radford et al. 2021]."

Bommasani et al. 2021
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Fig. 6. Language Acquisition for humans and foundation models. While there are certainly different inductive
biases between the human brain and foundation models, the ways that they learn language are also very
different. Most saliently, humans interact with a physical and social world in which they have varied needs
and desires, while foundation models mostly observe and model data produced by others.

Bommasani et al. 2021
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“the feature of foundation models that has been most impactful in NLP is not
their raw generation abilities but their surprising generality and adaptability: a
single foundation model can be adapted in different ways in order to achieve
many linguistic tasks”

Bommasani et al. 2021
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Fig. 17. The five key properties of a foundation model: expressivity — to flexibly capture and represent rich
information; scalability — to efficiently consume large quantities of data; multimodality — to connect together
various modalities and domains; memory capacity — to store the vast amount of accumulated knowledge;
and compositionality — to generalize to new contexts, tasks and environments.

Bommasani et al. 2021
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e Expressivity

Scalability

Multimodality
e Memory

e Compositionality

Bommasani et al. 2021
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“For foundation models to effectively fit the complex and high-dimensional
distribution of images or text, they should thereby be scalable across all
dimensions: including both models’ depth and width as well as their training
time, number of parameters, and the amount of data they could process.”

Bommasani et al. 2021
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Resources

e N. Number of model parameters (excluding all vocabulary and positional
embeddings)

e D. Dataset size in terms of number of tokens.

e C. Amount of compute in training (PF days)

Also looks at “critical batch size” Bt

12
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Proposed model

s (3)"

where X is C, D or N; ax is its power-law exponent; L is cross entropy loss.
Experimentally solve for X¢ and ax
L(X) = (Xc/X)™

where X¢ and ax are constants.

Kaplan et al. 2020
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Power Law Scale (tokenization-dependent)

ay = 0.076 N, = 8.8 x 103 params (non-embed)

ap =0.095 | D.=5.4x 10" tokens

ac = 0.057 O, = 1.6 x 107 PF-days

ot = 0.050 | O = 3.1 x 10® PF-days

ag = 0.21 B, = 2.1 x 10° tokens

as =0.76 Se = 2.1 x 10° steps
Table 5

No fundamental interpretation because they change with a change in

vocabulary/ language.

Kaplan et al. 2020
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Some findings

e “Smooth power laws”

e “Performance depends strongly on scale, weakly on model shape”
e “Large models are more sample-efficient than small models”

e ‘“Transfer improves with test performance”

ii5)
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of computg®|used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Kaplan et al. 2020
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Figure 6 Left: When we include embedding parameters, performance appears to depend strongly on the
number of layers in addition to the number of parameters. Right: When we exclude embedding parameters,
the performance of models with different depths converge to a single trend. Only models with fewer than 2
layers or with extreme depth-to-width ratios deviate significantly from the trend.

Kaplan et al. 2020
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Figure 3 Asmore compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse. Of the increase in data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase in serial training time required.

Kaplan et al. 2020
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Figure 8 Left: Generalization performance to other data distributions improves smoothly with model size,
with only a small and very slowly growing offset from the WebText2 training distribution. Right: Gener-
alization performance depends only on training distribution performance, and not on the phase of training.
We compare generalization of converged models (points) to that of a single large model (dashed curves) as it
trains.

Kaplan et al. 2020
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“We observe no signs of deviation from straight power-law trends at large values
of compute, data, or model size. Our trends must eventually level off, though,
since natural language has non-zero entropy.”

Kaplan et al. 2020
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“Recent impressive progress on transfer and few-shot learning suggests an
emerging direction that scaling up models and training them on a huge corpus of
data is the main obstacle towards better performance on downstream tasks with
less or no data.”

e vision transformers [Zhai et al. 2021]

e transfer learning [Hernandez et al. 2021]

Abnar et al. 2021
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e 4800 (imported) experiments with different configurations

e controlled experiments: increase data size, model size and training time to
explore DS-vs-US accuracy

e most experiments not trained for the purpose of this paper

e aggregate different vision transformer, MLP mixer and ResNet models from
different researchers in a meta-study

e focuses on downstream vs upstream accuracy instead of directly on the
impact of scaling

Abnar et al. 2021

22
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Proposed model inspired by Kaplan et al.
eps = k(eus)“+er

where eps, eus, er refers to DS, US and irreducible errors respectively. k and «
are constants.

Plotting in log scaling gives a straight line only when er is zero.

Error is 1 - accuracy.

23
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1500 vision transformers, 1400 MLP-mixers, 16 ResNets
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Abnar et al. 2021
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Exploring the limits of large scale pre-training OF BRITISH COLUMBIA

1400 vision transformers, 90 MLP mixers, 233 ResNets
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Abnar et al. 2021
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More than 3000 vision transformers, logit scaling for downstream accuracy
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Abnar et al. 2021
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Saturation point

e ‘“the value of downstream accuracy as upstream accuracy reaches 1.0”

e where “it is not worth scaling up data size, compute or model size to
improve US accuracy as the effect on DS accuracy is negligible”

e increasing pre-training effort may lead to downstream performance
reaching a saturation point below its Bayes error

Abnar et al. 2021
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“[Saturation] is about the relationship between the US and DS tasks”
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Abnar et al. 2021
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e ‘“optimal layer is not the last one”

e ‘“pre-trained network lacks the fine-grained features required to perform
well on DS”

Abnar et al. 2021
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Abnar et al. 2021
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“contrary to the common narrative, scaling does not lead to a one-model-fits-all

solution”

“when investing in scaling in terms of data, model parameters and compute, we
should think of an additional axis which is data diversity."

Abnar et al. 2021
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