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Recall from yesterday...

ICM: For each xi find the mode of the energy function, conditional on
x¬i

Gibbs sampling uses the same idea except instead of approximately
decoding, we sample from the conditional distribution
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Gibbs Sampling

Basic idea: sample each variable in turn, conditional on the currents values
of all other variables in the distribution. E.g. if D = 3

x

s+1
1 ⇠ p(x1|x s2 , x s3)

x

s+1
2 ⇠ p(x2|x s+1

1 , x s3)

x

s+1
3 ⇠ p(x3|x s+1

1 , x s+1
2 )
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Gibbs Sampling (cont...)

Sampling from the conditional distribution is easy because...

P(xi |x¬i ) =
P(Xi , x¬i )P

x2Xi
P(Xi = x , x¬i )

=
P̃(Xi , x¬i )P

x2Xi
P̃(Xi = x , x¬i )

=

Qn
k=1 �k(xk)

Q
k,j2E �k,j(xk , xj)P

x2Xi

Qn
k=1 �k(xk)

Q
k,j2E �k,j(xk , xj)

=
�i (xi )

Q
i ,j2neigh ofi �i ,j(xi , xj)P

x2Xi
�i (xi )

Q
i ,j2neigh ofi �i ,j(xi , xj)
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Block Gibbs

Similarly to yesterday, we can sample from more than one variable at a
time by splitting our graph into trees and using the methods from last
week to sample.
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Block Gibbs

Swendsen–Wang (1987)

Seminal algorithm using auxiliary variables

Edwards and Sokal (1988) identified and generalized the

“Fortuin-Kasteleyn-Swendsen-Wang” auxiliary variable joint

distribution that underlies the algorithm.

See also Swendson-Wang (1987) for an alternate way of proposing samples
with large moves.
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Markov Chain Refresher

Great - but how do we know that the samples come from our target
distribution? Let’s examine the relationship with MCMC. First, a refresher
on Markov chains...

Recall from last week:

A regular Markov chain with transition matrix T converges to an
invariant distribution P

?(x) such that TP?(x) = P

?(x).

Idea - let’s construct a Markov Chain s.t. its invariant distribution is
our distribution of interest P(x), then can sample from it by
repeatedly applying T .

Jason Hartford MCMC for UGMs August, 2015 8 / 24



Markov Chain Refresher

Great - but how do we know that the samples come from our target
distribution? Let’s examine the relationship with MCMC. First, a refresher
on Markov chains...
Recall from last week:

A regular Markov chain with transition matrix T converges to an
invariant distribution P

?(x) such that TP?(x) = P

?(x).

Idea - let’s construct a Markov Chain s.t. its invariant distribution is
our distribution of interest P(x), then can sample from it by
repeatedly applying T .

Jason Hartford MCMC for UGMs August, 2015 8 / 24



Markov Chain Refresher

Great - but how do we know that the samples come from our target
distribution? Let’s examine the relationship with MCMC. First, a refresher
on Markov chains...
Recall from last week:

A regular Markov chain with transition matrix T converges to an
invariant distribution P

?(x) such that TP?(x) = P

?(x).

Idea - let’s construct a Markov Chain s.t. its invariant distribution is
our distribution of interest P(x), then can sample from it by
repeatedly applying T .

Jason Hartford MCMC for UGMs August, 2015 8 / 24



Detailed Balance

A su�cient (but not necessary) condition for ensuring P(x) is invariant is
to choose T (·) such that:

T (x 0  x)P?(x) = T (x  x

0)P?(x 0) 8x , x 0

Proof: X

x 0

T (x  x

0)P?(x 0) =
X

x 0

T (x 0  x)P?(x)

P

?(x)
X

x 0

P(x 0|x) = P

?(x)

TP

?(x) = P

?
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Gibbs Sampling

For Gibbs Sampling we apply a series of transition operators Ti .

Ti (x
0  x) = P(xi = x

0|x¬i )
So detailed balance applies for each component, and by combining
operators T1,T2, . . .Tn we can reach any x.
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Samples
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Samples
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Decoding using the temperature parameter

For some temperature T = 1
�

Annealing / Tempering

e.g. P (x; �) � P �(x)� �(x)(1��)

� = 0 � = 0.01 � = 0.1 � = 0.25 � = 0.5 � = 1

1/� = “temperature”Jason Hartford MCMC for UGMs August, 2015 13 / 24



Decoding using the temperature parameter

So simulated annealing works as follows:

Draw sample using Gibbs with temperature T

Reduce T by some ✏
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Learning via Herding

We focus on herding for structured prediction. Recall from Monday:

Given data D = {(x(n), y(n))}Nn=1 drawn from P(x, y) we learn
f : X ! Y where y = (y1, . . . , ym) and each yi 2 {1, . . . ,K}. Finally
y↵ denotes some subset of y

We learn a linear prediction rule of the form:

ŷ = f (x, y) = arg max
y2Y

X

↵

w↵ ↵(y↵, x)

Running example. yi is one of K labels associated with each pixel i
and we have unary features  (yi , x) for each pixel and pairwise
features for each adjacent pixel  i ,j(yi , yjx).

Standard learning goal: find w

?

w

? = arg min
w

L(D,w) = arg min
w

1

N

NX

n=1

l(x(n), y(n),w)
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Learning via Herding

Consider a conditional Gibbs distribution:

p⌧ (y|x,w) =
1

Z⌧ (x,w)
exp

 
1

⌧

X

↵

w↵ ↵(y↵, x)

!

Z⌧ (x,w) =
X

y2Y
exp

 
1

⌧

X

↵

w↵ ↵(y↵, x)

!

With ⌧ = 1 this is the CRF Mark presented on Monday. We learn by
minimising the loss:

l⌧,LL(x, y,w) = �⌧ log p⌧ (y|x,w) = �
X

↵

w↵ ↵(y↵, x)) + ⌧ logZ⌧ (x,w)

Jason Hartford MCMC for UGMs August, 2015 16 / 24



Learning via Herding

If we wanted to find the optimal w

?, our gradient update is:

w

t
↵ = w

t�1
↵ + ⌘↵,t

0

@EP̂ [ ↵]� 1

N

X

n

X

y

0

p⌧ (y
0|x(n),wt�1) ↵(y↵, x)

1

A

Which reaches the optimal w

? when EP̂ [ ↵] equals the observed moments.

But with herding... we don’t want to find the optimal w

?.

Jason Hartford MCMC for UGMs August, 2015 17 / 24



Learning via Herding

If we wanted to find the optimal w

?, our gradient update is:

w

t
↵ = w

t�1
↵ + ⌘↵,t

0

@EP̂ [ ↵]� 1

N

X

n

X

y

0

p⌧ (y
0|x(n),wt�1) ↵(y↵, x)

1

A

Which reaches the optimal w

? when EP̂ [ ↵] equals the observed moments.
But with herding... we don’t want to find the optimal w

?.

Jason Hartford MCMC for UGMs August, 2015 17 / 24



Learning via Herding

Instead we take the limit ⌧ ! 0 to get the herding loss:

lHerd(x, y,w) = �
X

↵

w↵ ↵(y↵, x) + max
y

0

"
X

↵

w↵ ↵(y0↵, x)

#

Notice that the above is minimised when w = 0. So it seems pointless to
apply subgradient updates... but this is exactly what herding does!
We update as follows:

ŷ

(n),t = arg max
y

0

X

↵

w↵ ↵(y0↵, x)

w

t
↵ = w

t�1
↵ + ⌘↵

 
EP̂ [ ↵]� 1

N

X

n

 ↵(ŷ(n),t↵ , x(n))

!
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Learning via Herding

The sequence of updates will not converge as long as at least one incorrect
prediction is made at every iteration. i.e. ŷ

(n),t 6= y

(
n) and the sequence

. . . ,wt�1,wt ,wt+1, . . . will not diverge as long as some simple conditions
are met.
Herding returns . . . ,wt�1,wt ,wt+1, . . . and . . . , yt�1, yt , yt+1, . . . such
that, �����EP̂ [ ↵]� 1

T

TX

t=1

1

N

X

n

 ↵(ŷ(n),t↵ , x(n))

����� = O(
1

T

) 8↵

Herding produces samples converge faster than the O( 1p
T

) convergence

rates of normal Monte Carlo samples from P̂ , despite not returning w

?.
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Learning via Herding

Is not having w

? a problem? Depends on the application.
Works well in image segmentation where you can just average y

t for some
T .
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Herding16 Herding for Structured Prediction

Figure 1.1: Examples of segmentation on Pascal VOC 2007 data set. Images on
each line starting from left to right are respectively: (a) the original image, (b)
ground truth segmentation, results of (c) local classifier, (d) CRF and (e) Herding,
results with intensity proportional to the posterior probability of the (f) local
classifier and (g) Herding, and (h) the Herding estimate of the pairwise probability
of the existence of a boundary (the corresponding posterior probability for CRF
cannot be easily obtained). Neighboring superpixels of a distance up to 3 hops are
used for training local SVM. Best viewed in color.

the boundaries more accurately. Most boundaries occur in the place with
strong pairwise probabilities. CRF provides similar benefits as Herding for
regularizing the local classifiers.

We evaluate the performance of these three models by two measurements.
The first one is the average accuracy adopted by VOC 2007 Competition.
It measures the average recall of pixels for each category. The second
measurement is the one adopted by VOC competition after 2007. It measures
the average of the intersection over union ratio for each category. The
results of both evaluation methods are shown in Figure 1.2. The results
show that both Herding and CRF increase the accuracy in most cases,
and Herding always achieves the best accuracy except for N = 2 by the
second measurement. The reduction of the advantage of Herding compared
to CRF in the second measurement may be due to the fact that false positive
detections appear frequently in the background which does not reduce the
recall of the background category by much, but will reduce the intersection
over union ratio of the detected category.

Remarkably, Herding performs much better than the local method when
N = 0. The accuracy is improved from 14% to 22% on the first measurement
and 4% to 9% on the second measurement, while CRF does not help at
all. The local classifier performs poorly because the histogram feature is
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Herding

Not so well for the rain dataset...
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Herding

Samples from herding

5 10 15 20 25
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250
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Summary

We can easily sample from UGM’s using conditioning to make Gibbs
moves.

These samples can also be used for decoding and inference.

Herding is an alternate way of sampling without the intermediate
learning step.
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