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Natural Language Processing

Figure 1: Adapted from [1].
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Image Parsing

Figure 2: Adapted from [10].
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RNA Secondary Structure Prediction

Figure 3: Adapted from Wikimedia Commons.
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Outline

Non-Probabilistic Grammars

Probabilistic Context Free Grammars (PCFGs)
PCFGs in Chomsky Normal Forms (CNFs)

Calculating Probability of a Sequence
Determining the Most likely Parse for a Sequence
Learning Rule Parameters for an Unparameterised PCFG

Grammar Learning

The ADIOS Algorithm
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Grammars

A grammar G is a 4-tuple G = (N,Σ, R, S), where:

N is a finite set of non-terminal symbols.
Σ is a finite set of terminal symbols.
R is finite set of rules of the form (Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗

S ∈ N is a distinguished start symbol.
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Grammar Example
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The Chomsky Hierarchy
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Context-Free Grammars (CFGs)

A CFG G is a 4-tuple G = (N,Σ, R, S), where:

N is a finite set of non-terminal symbols.
Σ is a finite set of terminal symbols.
R is a finite set of rules of the form X � Y1Y2...Yn, where
X ∈ N,n ≥ 0 and Yi ∈ (N

⋃
Σ)∗ for i = 1...n.

S ∈ N is a distinguished start symbol.
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GFG Example
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Chomsky Normal Form (CNF)

A context-free grammar is in Chomsky Normal Form when

each rule has the form X � X1X2, X � a, or S � ε where X,X1

and X2 are non-terminals, a is a terminal, and S is the start symbol.

Any context-free grammar can be converted into an equivalent
grammar in Chomsky normal form.

Disadvantages: (1) more nonterminals & rules (up to quadratic
blowup in size), (2) less obvious relation to problem domain.
Advantages: (1) easy implementation of parsers, (2) CNF
conversion is used in some algorithms as a preprocessing step,
e.g., CYK.

11/57



CNF Example
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Probabilistic Grammars

Non-probabilistic grammars either generate a string x or not.

Patterns have to be modified to allow the language to grow.
It is difficult to create a specific pattern. In some cases (e.g., some
protein families) it is impossible to produce a discriminative pattern.
As a pattern is loosened, it is possible to match random unrelated
sequences.

Probabilistic (stochastic) grammars generate different strings
x with probability P (x|θ).

Allows exceptions, but can give exceptions less probability.
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Hidden Markov Models (HMMs) are Probabilistic

Regular Grammars [3]

HMMs are probabilistic regular grammars.

HMMs are Moore machines (emit symbols on states).
Probabilistic regular grammars are Mealy machines (emit a
terminal on transition to a non-terminal).
Moore and Mealy machines are interchangeable.

Algorithms for scoring, training, aligning of probabilistic regular
grammars are the same used as in HMM.
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Probabilistic Context Free Grammars (PCFGs)

A PCFG

extends context-free grammars by defining a multinomial
distribution over the set of derivation rules over each terminal
symbol.
has a parameter P (X � γ) for each rule X � γ, where
probabilities are normalized at the level of each nonterminal,
∀X ∈ N,

∑
X�γ P (X � γ) = 1.∑

x P (x|θ) = 1
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PCFG Example
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Basic Problems for PCFGs [3]

Scoring problem: calculate the probability of a sequence
according to a parametrised PCFG:

P (x|θ) =? (1)

Alignment problem: Determine most likely parse (alignment)
of a sequence according to a parametrised PCFG:

argmax
t

P (t|x, θ) =? (2)

Training problem: Learn rule probability parameters for an
unparameterised PCFG, given a set of sequences:

argmax
θ

P (x1...xn|θ) =? (3)
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Sequence Probability

The probability of a sequence x according to grammar G with
parameters θ:

P (x|θ) =
∑
t

P (x, t) (4)

where t is a parse (alignment) of the sequence.

Trivial solution: find all parse trees, calculate and sum up their
probabilities.

Problem: exponential time complexity in general

Efficient solution: using inside and outside probabilities.
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Probability of Sequence
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Probability of Sequence
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Probability of Sequence

For the sentence x = astronomers saw stars with ears, we can
construct 2 parse trees.

P (x|θ) = P (x, t1) +P (x, t2) = 0.0009072 + 0.0006804 = 0.0015876
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The Inside Probability for CNFs

We want to calculate the probability of a sequence x = x1, ...xL

according to grammar G with parameters θ, i.e., P (x|θ).

α(i, j, v) is the joint probability of starting from the non-terminal
Xv and generating xi, ..., xj .
P (x|θ) = α(1, L, 1)

ev(xi) is the probability of rule Xv � xi.
tv(y, z) is the probability of rule Xv � XyXz.
M = |X| and L = |x|.
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The Inside Algorithm for CNFs

procedure INSIDE

Initialization:
for i = 1 to L, v = 1 to M do

α(i, i, v) = ev(xi)

end for
Iteration:

for i = 1 to L− 1, j = i+ 1 to L, v = 1 to M do
α(i, j, v) =

∑M
y=1

∑M
z=1

∑j−1
k=i α(i, k, y)α(k + 1, j, z)tv(y, z)

end for
Termination:

P (x|θ) = α(1, L, 1)

end procedure
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Illustration of Recursion

Figure 4: Illustration of the recursion calculation of α(i, j, v).
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The Outside Probability for CNFs

We want to calculate the probability of a sequence x = x1, ...xL

according to grammar G with parameters θ, i.e., P (x|θ).

β(i, j, v) is the probability of a parse tree rooted at start state X1

(S) for the complete sequence sequence x, excluding all parse
subtrees for the subsequence xi, ..., xj rooted at nonterminal Xv.
P (x|θ) =

∑M
v=1 β(i, i, v)ev(xi) for any i.

ev(xi) is the probability of rule Xv � xi.
tv(y, z) is the probability of rule Xv � XyXz.
M = |X| and L = |x|.
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The Outside Algorithm for CNFs

procedure INSIDE .

Initialization:
β(1, L, 1) = 1

for v = 2 to M do
β(1, L, v) = 0

end for
Iteration:

for i = 1 to L, j = L to i, v = 1 to M do
β(i, j, v) =

∑
y,z

∑i−1
k=1 α(k, i− 1, z)β(k, j, y)ty(y, z) +∑

y,z

∑L
k=j+1 α(j + 1, k, z)β(i, k, y)ty(v, z)

end for
Termination:

P (x|θ) =
∑M
v=1 β(i, i, v)ev(xi) for any i.

end procedure
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Illustration of Recursion

Figure 5: Illustration of the recursion calculation of β(i, j, v). The first diagram
corresponds to the first part of the recursion and the second diagram
corresponds to the second part of the recursion. 27/57



The Cocke-Younger-Kasami (CYK) Algorithm for CNFs

procedure CYK . Finds the most likely parse t̂ of a sequence x.
Initialization:

for i = 1 to L, v = 1 to M do
γ(i, i, v) = log ev(xi)

τ(i, i, v) = (0, 0, 0)

end for
Iteration:

for i = 1 to L− 1, j = i+ 1 to L, v = 1 to M do
γ(i, j, v) = maxy,z maxk=i..j−1 γ(i, k, y) + γ(k + 1, j, z) + log tv(y, z)

τ(i, j, v) = argmax(y,z,k),k=i..j−1 γ(i, k, y) + γ(k + 1, j, z) + log tv(y, z)

end for
Termination:

logP (x, t̂|θ) = τ(1, L, 1).
end procedure
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The Cocke-Younger-Kasami (CYK) Traceback

procedure CYK TRACEBACK

Initialization:
Push (1, L, 1) on the stack.

Iteration:
Pop (i, j, v).
(y, z, k) = τ(i, j, v).
if τ(i, j, v) = (0, 0, 0) (implying i == j ) then

Attach xi as the child of v.
else

Attach y, z to parse tree as children of v.
Push (k + 1, j, z).
Push (i, k, y).

end if
end procedure

29/57



General Schema for Certain (Multinomial

Distributions) EM Algorithms [6] [8]

Given two events, x and y, the maximum likelihood estimation
(MLE) for their conditional probability is:

P (x|y) =
count(x, y)

count(x)
(5)

If they are observable, it is easy to see what to do: just count the
events in a representative corpus and use the MLE or a
smoothed distribution.
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General Schema for Certain (Multinomial

Distributions) EM Algorithms [6] [8]

What if these are hidden variables that cannot be observed
directly?

Use a model θ and iteratively improve the model based on a
corpus of observable data (O) generated by the hidden variables:

Pθ̂(x|y) =
Eµ[(count(x, y)|O]

Eµ[count(x)|O]]
(6)

It is worth noting that if you know how to calculate the numerator,
the denominator is trivially derivable.

By updating θ and iterating, the model converges to at least a
local maximum.
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The Inside-Outside Algorithm for CNFs (Parameter

Re-estimation by Expectation Maximization)

1 Begin with a given grammar topology and some initial probability
estimates for rules.

∀X ∈ N,
∑
X�γ P (X � γ) = 1, P (X � γ) ≥ 0

2 The probability of each parse of a training sequence according to
G will act as our confidence in it.

3 Sum the probabilities of each rule being used in each place to
give an expectation of how often each rule was used.

4 Use the expectations to refine the probability estimates -
increase the likelihood of the training corpus according to G.
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The Inside-Outside Algorithm for CNFs

The expected number of times that Xv is used in a derivation:

c(v) =
1

P (x|θ)

L∑
i=1

L∑
j=i

α(i, j, v)β(i, j, v) (7)

The expected number of times that Xv is occupied and then
production rules Xv � XyXz is used:

c(v � yz) =
1

P (x|θ)

L−1∑
i=1

L∑
j=i+1

j−1∑
k=i

β(i, j, v)α(i, k, y)α(k+1, j, z)tv(y, z)

(8)
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The Inside-Outside Algorithm for CNFs

MLE for v � yz given v:

t̂v(y, z) =
c(v � yz)

c(v)

=

∑L−1
i=1

∑L
j=i+1

∑j−1
k=i β(i, j, v)α(i, k, y)α(k + 1, j, z)tv(y, z)∑L
i=1

∑L
j=i α(i, j, v)β(i, j, v)

(9)

Similarly, MLE for v � a given v:

êv(a) =
c(v � a)

c(v)
=

∑
i|xi=a

β(i, i, v)ev(a)∑L
i=1

∑L
j=1 α(i, j, v)β(i, j, v)

(10)

In the case of multiple independent observed sequences,
expected counts are summed over all sequences.
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Grammar Learning

Grammar learning refers to the learning of a formal grammar
from a set of observations, thus constructing a model which
accounts for the characteristics of the observed objects.

Presentation set:

Text (only positive examples).
Informant (both positive and negative examples).

Learning methods:

Supervised (use structured sequences).
Unsupervised (uses unstructured sequences).
Semi-supervised (uses unstructured data to improve supervised
learning tasks).
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A Survey of Grammatical Inference Methods for

Natural Language Learning [2]
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Goal

Given a corpus of raw text (unstructured positive examples)
separated into sequences, we want to derive a specification of
the underlying grammar.

This means we want to

Create new unseen grammatically correct sequences.
Accept new unseen grammatically correct sequences and reject
ungrammatical ones.
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Automatic Distillation of Structure (ADIOS) [9] [5] [7]

ADIOS uses statistical information present in raw sequential data
to identify significant segments and to distill rule-like regularities
that support structured generalization.

ADIOS has three main elements

A representational data structure.
A segmentation criterion (MEX).
A generalization ability.
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Graph Representation

Words as vertices and sequences as paths.

Figure 6: Image adapted from [5]
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Automatic Distillation of Structure (ADIOS)

ADIOS has three main elements

A representational data structure.
A segmentation criterion (MEX).
A generalization ability.
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Detecting Significant Patterns

Figure 7: Image adapted from [5]

Identifying patterns becomes easier on a graph.
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Motif EXtraction (MEX)

Figure 8: Image adapted from [5]
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Rewiring the graph

Figure 9: Image adapted from [5]
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Automatic Distillation of Structure (ADIOS)

ADIOS has three main elements

A representational data structure.
A segmentation criterion (MEX).
A generalization ability.
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Generalization: Defining an Equivalence Class

Figure 10: Image adapted from [7]
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Generalization
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Bootstrapping

Figure 11: Image adapted from [7] 47/57



Bootstrapping

Figure 12: Image adapted from [5]
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The ADIOS Algorithm Outline

Initialization - load all data into a pseudograph

Until no more patterns are found
For each path P

Create generalized search paths from P
Detect significant patterns using MEX
If found, add best new pattern and equivalence classes and rewire the
graph
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ADIOS:Context-free Mode Example

Figure 13: Adapted from [4]
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Evaluating Performance

Recall: the probability of ADIOS recognizing an unseen
gramatical sequence.

Can be assessed by leaving out some of the training corpus.

Precision: the proportion of grammatical ADIOS productions.

Can be evaluated by external referee (e.g., by a human subject).
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ADIOS Drawback

ADIOS is a heuristic.

Once a pattern is created it remains forever - errors conflate
Sequence ordering affects outcome.

Running ADIOS with different orderings gives patterns that cover
different parts of the grammar.
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An Ad-hoc Solution

Train multiple learners on the corpus.

Each on a different sequence ordering.
Create a forest of learners.

To create a new sequence

Pick one learner at random.
Use it to produce sequence.

To check grammaticality of given sequence

If any learner accepts sequence, declare as grammatical.
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