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Mysterious Generalization Behaviour of Deep Models

Deep models, usually heavily over-parametrized, tend to easily

fit the training data with 0 training error.

But why can these overfitted models generalized well?
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Mysterious Generalization Behaviour of Deep Models

Deep models, usually heavily over-parametrized, tend to easily

fit the training data with 0 training error.

But why can these overfitted models generalized well?

This is not unique for deep models, kernel machines have
similar generalization performance.
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Recap of Classical Bounds

A classical learning paradigm is Empirical Risk Minimization(ERM).

Given data {(xi , yi ), i = 1, · · · , n} sampled from a probability distribution

P on Ω× {1,−1}, a class of functions H : Ω→ R and a loss function l ,

ERM finds a minimizer of the empirical loss:

f ∗ = argmin
f∈H

Lemp(f ) := argmin
f∈H

∑
i

l(f (xi ), yi ).

Many classical generalization bound are of the form

|E [l(f ∗(x), y)]− Lemp(f )| < O∗(
√
c/n). The c is a measure of

complexity of H, e.g., VC-dimension, Rademacher complexity, covering

number, fat shattering dimensions.
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Recap of Kernel Learning

Let K (x , z) : Rd × Rd → R be a positive definitely kernel, then there

exists a corresponding Reproducing Kernel Hilbet Space(RKHS) H of

functions on Rd , associated to the kernel K (x , z).

The minimum norm interpolent is defined as

f ∗ = argmin
f∈H,f (xi )=yi

‖f ‖H.

By Representer Theorem, f ∗ can be written explicitly as

f ∗(·) =
∑

α∗i K (xi , ·).

Then we can formulate kernel learning as

α∗ = argmin
α∈Rn

n∑
i=1

l

 n∑
j=1

αiK (xj , xi )

 , yi

.
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Recap of Kernel Learning

This formulation is an unconstrained optimization problem on a

finite-dimensional space Rn, so it can be solved by iterative methods.

RKHS norm of a function of the form f (·) =
∑
αiK (xi , ·) can be

computed as

‖f ‖2H = 〈α,Kα〉 =
∑
ij

αiKijαj .

• Gaussian Kernel: K (x , z) = exp
(
−‖x−z‖

2

2σ2

)
• Laplacian Kernel: K (x , z) = exp

(
−‖x−z‖σ

)
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Experiments Setup

• Kernels: Gaussian and Laplacian

• Optimizer:

• EigenPro-SGD

• Directly method

• Six dataset: MNIST, CIFAR-10, SVHN, TIMIT, HINT-S, 20

Newsgroups
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Experiment Results
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Experiment Results

• Training square

loss(mse)/training classification

error approaches zero.

• Test error, both mse and ce,

remains stable, in most cases,

keeps decreasing and then

stablize.

• Direct solutions always provide

a highly accurate interpolation

for the training data.

• Interpolated solution on test is

either optimal or close to

optimal in mse and ce.
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Conclusion

• Generalization performance of overfitted/interpolated kernel

classifiers closely parallels behaviors of deep networks.

• It has been observed before that very small values of regularization

parameters frequently lead to optimal

performances[SSSSC11, TBRS13]. Similar observations were also

made for Adaboost and Random Forests[SFB+98].
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Existing Generalization Bounds for Kernel Methods

Most of the available bounds for kernel methods (see, e.g.,

[SC08, RCR15]) are of the following (general) form:∣∣∣∣∣1n∑
i

l(f (xi ), yi )− EP [l(f (x), y)]

∣∣∣∣∣ ≤ C1 + C2
‖f ‖αH
nβ

, C1,C2, α, β ≥ 0.

Some bounds are potentially logarithmic[Bel18, GK17], but all of them

include a non-zero accuracy parameter( 1
ε ), so it will not apply to

interpolated classifier.
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Digression: Fat Shattering Dimension

We say a function class H shatters a set X = {x1, · · · , xn} if it contains

all of the possible label assignments of the set.

VC dimension is the maximum cardinality of all of the sets can be

shattered by H.
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Digression: Fat Shattering Dimension

We say that H shatters x1 · · · , xn at scale γ, if there exists witness

s1, · · · , sn such that, for every ε ∈ {±1}n, there exists f ∈ H such that

∀t ∈ [n], εt · (fε(xt)− st) ≥
γ

2
.

fatγ(H) = max{n : ∃x1, · · · , xn ∈ X s.t. H γ-shatters x1, · · · , xn}.
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Lower Bound for Interpolated Kernel

Assumptions:

• (xi , yi ) ∈ Ω× {−1, 1} be a labelled dataset

• Domain Ω ⊆ Rn is bounded

• Bayes optimal classifier(the label noise) is not 0, i.e., y is not a

deterministic function of x

Definition: A function h ∈ H t-overfits the data, if it achieves zero

classification loss, and, additionally, ∀i yih(xi ) > t > 0 for at least a fixed

portion of the training data.

This condition is necessary as zero classification loss classifiers with

arbitrarily small norm can be obtained by simply scaling any interpolating

solution.
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Lower Bound for Interpolated Kernel

Theorem: Let (xi , yi ), i = 1, · · · , n be data sampled from P on

Ω× {−1, 1}. Assume that y is not a deterministic function of x on a

subset of non-zero measure. Then, with high probability, any h that

t-overfits the data, satisfies

‖h‖H > AeBn
1/d

for some constants A,B > 0 depending on t.

This is an exponential lower bound for the Hilbert space norm of any

overfitted classifier and it makes the kernel generalization bound trivial.
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Proof Sketch

Let BR = {f ∈ H, ‖f ‖H < R} ⊆ H be a ball of radius R in the RKHS H.

Let l be the hinge loss with margin t : l(f (x), y) = (t − yf (x))+. By the

classical results on fat shattering dimension[AB09], ∃C1,C2 > 0 such that

with high probability ∀f ∈ BR :∣∣∣∣∣1n∑
i

l(f (xi ), yi )− EP [l(f (x), y)]

∣∣∣∣∣ ≤ C1γ + C2

√
fatγ(BR)

n
.

Let h ∈ BR t-overfits the data, 1
n

∑
i l(f (xi ), yi )=0 and

0 < EP [l(f (x), y)]− C1γ < C2

√
fatγ(BR)

n
.
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Proof Sketch

The previous inequality gives

fatγ(BR) >
n

C2
(EP [l(f (x), y)]− C1γ)2.

On the other hand, [Bel18] gives a bound on the fatγ dimension of the

form

fatγ(BR) < O

(
logd

(
R

γ

))
.

Combining these two together, we get the desired bound

R > AeBn
1/d

.
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Zero Label Noise?

A potential explanation for disparity in theory and experiments is that

there is zero label noise. This can occur in real dataset, e.g., linear

separable data.

Experiments Setup

• Dataset: Two synthetic(one separable, one non-separable)

Real data + noise

• Kernels: Gaussian and Laplacian

• Noise level: 0%, 1%, 10%
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Experiment Results(Synthetic Data 1)

• Overfitting model is the kernel

constructed by iterative

methods

• Interpolation model is the

kernel constructed by direct

methods

• Bayes optimal is the label noise

• Both interpolation and

overfitting models have close to

optimal performance on testing

data

• Error rate increases less than

label noise
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Experiment Results(Synthetic Data 1)

• For linearly separable data, an

overfitted solution achieves

optimal accuracy with a small

norm.

• Adding label noise increases the

norm significantly.

• Norm of either solution

increases quickly with the

number of data points,

consistent with our theorem.
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Experiment Results(Synthetic Data 2)

• Both classifiers’ performance on test data is within 5% of the Bayes

optimal.

• Adding additional label noise should have little impact because the

setting is already noisy.
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Experiment Results(Real Data + Noise)

• TIMIT is noisier than

MNIST, so the impact

of adding label noise is

bigger.

• Test performance decays

gracefully with amount

of label noise.

20



High Label Noise Bayes Risk Comparison

• All of the classifiers tracks the Bayes risk even for very high level of

label noise.

• Laplacian kernel can handle label noise better than Gaussian kernel.
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Recap of Experiments Results
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Laplacian vs Gaussian

• Laplacian kernel takes few iterations to train. Moreover, it can fits

random data easily.

• ReLU networks can also fit random data easily[ZBH+16]. This is an

interesting similarity between ReLU networks and Laplacian kernel.

• It takes more computational effort to fit a Gaussian kernel.

• Authors of this paper conjecture that this property is related to

non-smoothness.

• On the other hand, overfitted/interpolated Gaussian and Laplacian

kernels show very similar classification and regression performance

on test data and this persists even with added label noise. Hence it

appears that the generalization properties of these classifiers are not

related to the specifics of the optimization.
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Parallels Between Deep and Shallow Architectures in Perfor-

mance of Overfitted Classifiers

A kernel machine can be viewed as a two layer neural network.

Thus, we can say shallow networks also have nice generalization

properties, just like deep ones.
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Implicit Regularization and Loss Functions

• Regularization vs Inductive bias: Frequently these two terms are

used interchangeably. In this paper, regularization means trading

training accuracy for testing performance while inductive bias means

gives preferences to certain functions without affecting their output

on the training data.

• By this definition, implicit regularization cannot explain the

generalization performance, since the training error is 0.

• Another interesting point is that any strictly convex loss function

leads to the same interpolated solution. Thus, it is unlikely that the

choice of loss function relates to the generalization properties of

classifiers.
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Wrap-up

• Overfitted/Interpolated kernel classifiers have unexpected good

generalization performance, just like deep neural networks.

• Existing theoretical bounds fails to explain this generalization

property for kernel classifiers. A close candidate is the bound for

1-nearest neighbour.

Therefore, to understand deep learning, we need to understand kernel

learning first!
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Questions?
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Thank you!
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