Gaussian Processes and
Empirical Bayes
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Linear Model

Dataset
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Fit the data using the standard linear model
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Assumptions
o y differs from f(x) by an additive error
o the error is independent, identically
distributed Gaussian distribution



Linear Model with Gaussian Likelihood

e Probability of target value given the data X and the parameters w

Pyl X, w) = N(X"w, o 1)

n n T N2
1 (y; — T w)
ZLll p(yz ’ i ) J:ll /_27T0n p( 20% )

e The mean is the linear model and the variance is the error

e Notice the simple product - it's due to the observations being assumed independent



Bayesian Linear Model with Gaussian Likelihood

e Specify a prior over the parameters
w ~ N(0,%))

Inference (MAP estimate) in the Bayesian linear model is based on the posterior distribution over the
weights

likelihood x prior p(y| X, w)p(w)
p(wly, X) =
Wiy X) p(y|X)

teri =
POSTEHOL marginal likelihood

e The normalizing constant is the marginal likelihood over w

p(y|X) = / p(¥| X, w)p(w) dw



Bayesian Linear Model with Gaussian Likelihood
e Inference in the Bayesian linear model is based on the posterior distribution over the weights

likelihood x prior p(y| X, w)p(w)

posterior = pwly, X) =

marginal likelihood p(y|X)
e Using proportionality to ignore the normalizing constant we get,
1 1 -
p(w|X,y) o exp(— 53 (y—X'w) (y — X"w)) exp (— ﬁwTEP 'w)
1 _ 1 _ _
X exp(—§(W—W)T(§XXT—I—E}]l)(w—w)), (2.7)
e Therefore,
X N "—iA_lX A1 A=0c2XXT +31
p(Wl 9y) ~ (W_ 2 Y ) n p



Relationship between Bayesian Linear Model and Ridge Regression

p(Y‘X:‘ W)p(w)
p(y|X)

likelihood '
A ikelihood x prior p(wly, X)

marginal likelihood

the penalized maximum likelihood is equivalent to ridge regression
likelihood X prior

osterior =
P marginal likelihood

e the negative log prior is sometimes thought of as a penalty term
e the likelihood is thought of as the least-squares objective function

e To make prediction over the test data, we average over all possible parameter values, weighted by
their posterior probability:

Pl Xoy) = [ B wipwl X, y) dw
— N(%XIA—le, x, A7'x,). A = a;zXXT + E;l

T



Different Linear Model formulations 10 | _ Linear model _
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Different Linear Model formulations

e Least square

w=(XTX)"1xTy i — 2T
e Ridge Regression
w=(XTx+ a0~ 1x1y

e Bayesian linear model - the mean of the posterior distribution
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Feature-space interpretation

e Linear model suffer from limited expressiveness - assumes data is linearly separable

e Toresolve this,
1. project the inputs into some high dimensional space using a set of basis functions (e.g. polynomial)

o(z) = (1,z,22,23,...)7
2. fit a linear model in this new space

f(x) = ¢(x)'w

e Prediction over the test data thus becomes,

folxe X,y ~ N5 d(x) A7 0y, ¢(x)T A7 p(x.))

n

A= 0,200" + 3!



Feature-space interpretation

e Prediction over the test data thus becomes,

ke X,y ~ N(=p(x) A0y, d(x,)T A p(x.))

JTL
A= 0,200 + %51

e An alternative formulation is the following (helps with the kernel trick)

f*|X*aXay g N(qb;rzpq)(K_i_g?%I)_IYa
b, Sy, — ¢, S, 0(K +021) 10T E,0,),



The Kernel trick

e Transforming the feature space into higher dimensional space can be computationally
and memory extensive
e Consider the following formulation

folxes X,y ~ N($. (K +031)7y,
CD*Tqub* - ¢*szq)(K + UiI)_lq)Tqub*)’
e Notice that the feature space are in these forms,

7TY,d, quZ}p_(I), or qb,,:rzqu*

e We can replace these terms by the kernel function defined as:

k(x,x') = ¢(x)TE,0(x') = th(x) - (X)) P(x) = 5/ 2 p(x)

e This computes the inner products between pairs in the dataset (implicitly using higher
order features) instead of explicitly computing the new features in the higher dimensional
space - this is known as the kernel trick



The Kernel trick

e Polynomial kernel: https://en.wikipedia.org/wiki/Polynomial_kernel



Building models with Gaussians

e Under the bayesian context we often work with integrations for computing marginals
e The normal distribution is easy to work with

plo | m. ) = 2 2] e { - 'S - 0}

e Marginals of the normal distribution are normally distributed

e =X (| ) sr, sy

p(z) = /p(w,y)dy = N (ug, Xz)

e conditionals of multivariate normals are normal

p(zly) = N(Nm -+ Emyz?;l (¥ — py), X — Ewyzy_lzgy)



Gaussian processes

e A Gaussian process is completely specified by its mean function and covariance function

m(x) = E[f(x)],
E(x,x") = E[(f(x) — m(x))(f(x) —m(x))],

f(x) ~ GP(m(x),k(x,x)). (2.14)

(2.13)

e We can derive a simple Gaussian process from the bayesian regression model

f(x) = ¢(x) 'w with prior w ~ N(0,%,)

e The function values of two samples x and x’ are jointly Gaussian with zero mean and
covariance ¢(x)' £,¢(x’) . This is due to the fact that,

Elf(x)] = ¢(x)TE[w] = 0,

2.15
E[f(x)f(x)] = ¢(x) Eww']p(x') = ¢(x)' Zp(x). —



Gaussian processes

e A Gaussian process is completely specified by its mean function and covariance function

m(x) = E[f(x)],
E(x,x") = E[(f(x) — m(x))(f(x) —m(x))],

f(x) ~ GP(m(x),k(x,x)). (2.14)

(2.13)

e We can derive a simple Gaussian process from the bayesian regression model

f(x) = ¢(x) 'w with prior w ~ N(0,%,)

e The function values of two samples x and x’ are jointly Gaussian with zero mean and
covariance ¢(x)' £,¢(x’) . This is due to the fact that,

Elf(x)] = ¢(x)TE[w] = 0,
E[f(x)f(x)] = ¢(x) EwwT]¢(x) = ¢(x)TZ,$(x).

The kernel function
(2. 15)



Gaussian processes

e Therefore, the distribution over a set of function values is given as, Squared exponential kernel

f. ~ N(O’ K(X*’ X*)) k(z,z') = 6, exp(—%(m — mf)2)

e Given atraining set f and a testing set f*, their joint distribution is according to the following prior,

1] (o [523, 528))

e Conditioning the joint Gaussian prior distribution on the observations gets us the following posterior

£X., X,f ~ N(K(X., X)K(X, X)"f,
K(X.,X,) - K(X.,X)K(X,X)"'K(X, X,)).



Empirical Gaussian processes

£, ~ N(0,K(X,, X))  BPXeXT ~ NEX, XK X,
K(X.X,)- KX, X)K(X,X)"'K(X,X,)).

X=[0,1,2]y=[0.1,0.5,0.9]

P_)(inr mean function, plus and minus one standard deviation




Empirical Bayes

e Observations Yy = {y1,y2, ...,yn}
e Assume that Y; ~ N(wTa:'i, 0',32)
e Prioronw: W, ~~ N(O; )\j_l)

e Type | maximum likelihood: argmax,, p(y ’ w, X)

e Type | MAP estimate: argmax,, P(¥ | X, w)p(w)

e Type Il maximum likelihood: argmaxy p(y ’ Xa )\)

e Type Il MAP estimate: arginax, p(y | X, )\)p()\)

argmax,, ply | X,\) = / Py | A X )dw = / p(y | A, X, w)p(w | N)du



Empirical Bayes

e Observations Yy = {y1,y2, ...,yn}

e Assume that Yi ~ N(ngji, 0—3)

e Prioronw: W, ~~ N(O, )\j_l)
e Type Il maximum likelihood: argmax y p(y ’ X, )\)

argmax, p(y | X,\) = /p(y;w | A, X)dw = /p(y | A, X w)p(w | A)dw

= argmax, log |Z,| + yTE?jly

e Optimize the objective function using gradient descent, MCMC, coordinate descent etc.



Empirical Bayes flz) =2l w

e Observations Yy = {yh Y2y .eey yn} function value

__f 2
o Assumethat {; ~ N(wai? O—?) y=flzr)+e e~N(00;)
e Prioronw: W; ~ ./\/'(0’ )\j—l) observed target value Noise

e Type Il maximum likelihood: argmax y p(y ’ X, )\)

argmaxy p(y | X,A) = /p(y;w [ A X)dw = /p(y | A X, w)p(w | A)dw

= argmax, log |Z,| + yTZ?jly

e Optimize the objective function using gradient descent, MCMC, coordinate descent etc.

e Also known as Automatic relevance determination, similar to the L1 regularization term, leads to sparse
solutions



Automatic Relevance Determination

e Consider the following kernel

1
k(xp, Xq) = UJQC CXp (_ i(xp - Xq)TM(Xp - Xq))

where,

M = diag(£)* L =/,....0p

o £ defines the length-scale - a measure of how far you need to move (along a particular axis) in input space
for the function values to become uncorrelated

e the inverse of the length-scale determines how relevant an input is: if the length-scale has a very large

value the covariance will become almost independent of that input, effectively removing it from the
inference

e Equivalent to L1-Regularization but generates more sparse solutions



Demonstration

e Consider the following kernel

1
k(xp,%q) = JJZC exp (— i(xp — xq)TM(xp — xq))

where, M :diag(f)_2 ,e =¥i5:5: ;LD

length = 2 length = 5




