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● Assumptions
○ y  differs from f(x) by an additive error
○ the error is independent, identically 

distributed Gaussian distribution



Linear Model with Gaussian Likelihood

● Probability of target value given the data X and the parameters w

● The mean is the linear model and the variance is the error

● Notice the simple product - it’s due to the observations being assumed independent



Bayesian Linear Model with Gaussian Likelihood

● Specify a prior over the parameters

● Inference (MAP estimate) in the Bayesian linear model is based on the posterior distribution over the 
weights

● The normalizing constant is the marginal likelihood over w



Bayesian Linear Model with Gaussian Likelihood
● Inference in the Bayesian linear model is based on the posterior distribution over the weights

● Using proportionality to ignore the normalizing constant we get,

● Therefore,



Relationship between Bayesian Linear Model  and Ridge Regression

● the penalized maximum likelihood is equivalent to ridge regression

● the negative log prior is sometimes thought of as a penalty term
● the likelihood is thought of as the least-squares objective function

 
● To make prediction over the test data, we average over all possible parameter values, weighted by 

their posterior probability:
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Feature-space interpretation

● Linear model suffer from limited expressiveness - assumes data is linearly separable

● To resolve this, 
1. project the inputs into some high dimensional space using a set of basis functions (e.g. polynomial)

2. fit a linear model in this new space

● Prediction over the test data thus becomes,



● Prediction over the test data thus becomes,

● An alternative formulation is the following (helps with the kernel trick)

Feature-space interpretation



● Transforming the feature space into higher dimensional space can be computationally 
and memory extensive 

● Consider the following formulation

● Notice that the feature space are in these forms,

● We can replace these terms by the kernel function defined as: 

● This computes the inner products between pairs in the dataset (implicitly using higher 
order features) instead of explicitly computing the new features in the higher dimensional 
space - this is known as the kernel trick

The Kernel trick



● Polynomial kernel: https://en.wikipedia.org/wiki/Polynomial_kernel 

The Kernel trick



● Under the bayesian context we often work with integrations for computing marginals
● The normal distribution is easy to work with

 
● Marginals of the normal distribution are normally distributed

● conditionals of multivariate normals are normal

Building models with Gaussians



● A Gaussian process is completely specified by its mean function and covariance function

● We can derive a simple Gaussian process from the bayesian regression model

● The function values of two samples x and x’ are jointly Gaussian with zero mean and 
covariance                      . This is due to the fact that,

Gaussian processes
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Gaussian processes

The kernel function



● Therefore, the distribution over a set of function values is given as,

● Given a training set f and a testing set f*, their joint distribution is according to the following prior,

● Conditioning the joint Gaussian prior distribution on the observations gets us the following posterior

Gaussian processes

Squared exponential kernel



Empirical Gaussian processes

X = [0 , 1, 2] y = [0.1, 0.5, 0.9]

x

yy
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Empirical Bayes

● Observations

● Assume that

● Prior on w : 

● Type I maximum likelihood:

● Type I MAP estimate:

● Type II maximum likelihood:

● Type II MAP estimate:
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Empirical Bayes

● Observations

● Assume that

● Prior on w : 

● Type II maximum likelihood:

● Optimize the objective function using gradient descent, MCMC, coordinate descent etc.

● Also known as Automatic relevance determination, similar to the L1 regularization term, leads to sparse 
solutions 

function value

observed target value Noise

Automatic relevance determination



● Consider the following kernel

where,

●  defines the length-scale - a measure of how far you need to move (along a particular axis) in input space  
for the function values to become uncorrelated

● the inverse of the length-scale determines how relevant an input is: if the length-scale has a very large 
value the covariance will become almost independent of that input, effectively removing it from the 
inference

● Equivalent to L1-Regularization but generates more sparse solutions

Automatic Relevance Determination



● Consider the following kernel

where,

Demonstration


