Deep graphical models

JASON HARTFORD

Motivation

What characteris this?

IltH Ol" ll+” Of IIfH?

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Motivation

What characteris this?

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

How would we solve this using tools
we've learnt so far?

xlzm’x2:+—’x3:E‘r

P(Y1»Y2»Y3 ‘x11x21x3) — HP(YL"XL)
l

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

i ===

1l ke

X(t_l) X(t) X(t_l_l)

Recall the independent case with a

softmax output function

p(ylX) =][p(yrxx) HeXp D (x4)y) /27 (%)
k

Z L+1 H Properties of the
k k
Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Linear Chain Conditional Random Field

We’ll come back to
how to calculate the

partition function

K—-1
p(y|X) = exp ZQ(L_H) Xk)y, + Z Vvt /Z(X)
k=1 =1 .
~ SUGA — = Hoagetl — partition
s i likely s i followed unction
given input ? by yr+1 likely?

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Example

p(y — (“a” : “t” : “e”)|x1, xz, x3)

— exp (G(L+1)(X1)“a” + aF D) (x9) «pr + a LT (x3) «on +

V;(a” : “t” + -‘/“t” , “e”) /Z(X)

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Example

p(y — (“977, “t”, “e”)|x1, xz, x3)

— exp (a(L+1)(X1)“9,, + 0B (x9) «r + aEHD (x3) cr +
V‘Q,,,“t” + .‘/“t”,“e”) /Z(X)

py=() A ~py=(9) [)

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Example

p(y — (“977, “t”, “e”)|x1, xz, x3)

— exp (a(L+1)(xl)“9,, + 0B (x9) «r + aEHD (x3) cr +
V‘g,,,“t” + .‘/“t”,“e”) /Z(X)
.‘/(‘a'” (‘t” > .‘/“9” “t”
))

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Context windows

Unary log- Pairwise log-
i factor (yy (yk) 1 factor ap(yka yk—l—l)

i L+1,0
p(y|X) = exp| D a"O(xp)y, + Y Vigenrt
k=1 k=1 Unary log-
K—
Unary log- L+1,—1 L+1,+1
Z 1D ey Y + Z EH1D (411)y | /2(X)
au(yk) g o Y ~— Al -
is yk likely given input s y likely given input
on the left ? on the right ?

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

How do we do inference?

P(yIX) = exp (X4C, aulyr) + ks ap(ym, vrs)) /2(X)

where

ZX) =%, Ty Ty 0 (Thes aulh) + Ti5 ap(hs Vo))

hard to compute

Naive solutionis exponential in the number of classes
Can solve in O(K C?) where C is the number of classes using dynamic
programming (Forward-Backward algorithm). The same procedure allows us to

compute marginals, i.e. p(yx | X)
Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

How do we do classification?

Two options:

cOption 1: At each k, pick y;, with the largest marginal
probability p(y,|X).i.e. y, = argmax, p(y;|X). If the
CRF is the true distribution, this minimizes classification
error on expectation.

°Option 2: Find the mode of the distribution, y* =
argmax,p(y|X). Also can be done with dynamic

programming using the Viterbi decoding algorithm.

How do we train the network?

As before, we train the network by minimizing NLL using
SGD. Our lossis, I(f (X),y) = —logp(y|X)

Need gradients with respect to the parameters of the unary
and pairwise potentials.

Do forward pass -> forward backward -> backprop

Gradient of unary potentials

Va0 (x,) —logp(y|X) = —(e(yx) — P(yx|X))
Gradient of pairwise potentials /\ matrix of all pairwise
v marginal probabllities
Vv — log p(y|X) Z e(Yrr1) _;(ykaykﬂpz))
k=1 e
matrix of all pairwise = (EI‘eq(yk, yk+1J) i kz:l P(Yr» yk_HX))

label frequencies ™~ 4

Taking this idea further

We are notlimited to linear chain CRFs.

Can use other structures. E.g. grid structure for pixels on image or general n-wise
structures (but gets expensive quickly).

In general:
o Training: Forward pass to get activations, forward-backwardto do inference, backprop to get
gradients.

o |f the gradientsinvolve an expectation overy that gets too expensive, could estimate using
sampling (we’ll see an examplein a couple of slides).

o Find the most likely sequence (decode) using a forward pass to compute activations and
Viterbi decoding

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Taking this idea further

Can use more complex graphical models with neural networks to parameterize the factors.

Examples:

Grid structure General pairwise structure
(pixels in image) (webpages sharing a link)

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Taking this idea further

Can use more complex graphical models with neural networks to parameterize the factors.

Examples: @ @ @ @ @ @

R

Dyna mic
CRF

Adapted from: https://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_LatentCRF.pdf

Discriminative vs generative models

Conditional random fields are discriminative. i.e. We optimize:

— log p(y|X)

Could also model the joint probability by optimizing:
—log p(y, X) = —log(p(y|X)p(X)) = —log p(y|X) — log p(X)

In small data settings / if you have a lot of unlabeled data, the latter
can be useful

Unsupervised learning
& Generative models

Restricted Boltzman Machine

Special case of the the Boltzman Machine. Restrict the connectivity
to make learning easier

In an RBM, the hidden units are conditionallyindependent given the
visible states. This makes sampling easier.

pair-wise factors

—

o B
p(x,h) = EHHGXP(Wj,khﬂk)
ik

\
Hexp(ckxk)
k
1_[€f><P(bjhj)J
J

} unary
factors

Restricted Boltzman Machine

Special case of the the Boltzman Machine. Restrict the connectivity
to make learning easier

In an RBM, the hidden units are conditionallyindependent given the
visible states. This makes sampling easier.

“"h'"Wx—-c'x—b'h

— = ;: S:Wj,khjilik F=x chxk T ijhj
7k J

k
Distribution: p(x,h) = exp(—F(x,h))/Z.

E(x,h)

Inference

OO0000

h p(bix) = [T p(hx)

1
p(hj = 1|x) =

1 + exp(—(b; + W;.x))
= sigm(bj 3 Wj.x)

L__—j‘hrowofw

QOO0) h p(xh) = | [p(zx|h)
(o= 1) = - 1
OO0 x e A 14 exp(—(ck +hTWL))

k t column of W

= sigm(ck + hTWU

Training a Restricted Boltzman Machine

As before, we minimize the average negative log-likelihood of the data:
1 Z 1
— I(Ff(x®) = —= log p(x®)
7 2) =~ d "log p(x™)
t t
And then do stochasticgradient decent

0 — log p(x) OF(x() h) B
00 00 | L

o Negative Phase
Positive Phase [oere) i Eaaie)

_ B, |x(t)- OE(x,h)

Contrastive Divergence

1. The expectation in the negative phaseis hard to compute... replace it with a point estimate.

B, [E)E(x, h)] _9E(%h())

39 60 Think “Monte Carlo
estimate with a
2. ObtainX by Gibbssamplingand update parameters. single sample”

3. Startthe Gibbs samplingchain at X(t)

fOOOOOO) S OOOOO0) Aside: Gibbs sampling

1. Start from some
~ p(hlx ~ p(x|/h / \ / i(l) o (:Bgl), - ,:U,,(,Ll))
(. OO0 OOOO0) OOOO0) 2. Sample from conditional

)Tc(t) >lc1)l(k v x (k) ’“p(mi|$§1), T gD (D)
. 3. Repeat
negative sample

For more MCMC see: http://nbviewer.jupyter.org /github/jhartford/MCMC _talk/blob/master/MCMC%20talk.ipynb

Persistent Contrastive Divergence

h® = % (QO0000) CO0000)

- p(IMN p(XIb\ /

(OOCJ;)OO) (OO(l)OO) COO0O0)

| .
/ x =%

\ negative sample

X «— comesfromthe ¥
previous iteration

Contrastive Divergence

4 [aE(x<t> h)) (t)] OE(x®,h(®) g [0EGh)] OE(X,h)
? a6 | S e

| E(x, h)

x®, h®) (%, h)

Deep Belief Network

Top two layers for a Restricted Boltzman machine
3 2
p(h® h®)

Bottom three layers form a directed graphical

model (sigmoid belief network) where conditional
distributionsare as follows:

p(h§1) =1/h®) = sigm(W(l)Th(z) +bM)

Note differences with regular neural net
(sampling)

ayer-wise pre-training of a Deep Belief
Network

Idea: improve the prior distribution on the last layer by p(h), h®)) = p(hM|h®@) 37, 5, p(b?, h®))

adding another hidden layer
Train RBM using samples from layer below.

p(x,h)) = p(x|hM) 3°,) p(h(V) h(?D)

p(x) = Eh(l) p(x, h(l))

Deep belief network

See: http://www.cs.toronto.edu/~hinton/adi/index.htm

