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Motivation

What characteris this?
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Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
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How would we solve this using tools
we've learnt so far?
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Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
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Recall the independent case with a

softmax output function
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Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html




Linear Chain Conditional Random Field

We’ll come back to
how to calculate the

partition function
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Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html



Example
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Context windows
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Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html



How do we do inference?

P(yIX) = exp ( X4C, aulyr) + ks ap(ym, vrs)) /2(X)

where

ZX) =%, Ty Ty 0 (Thes aulh) + Ti5 ap(hs Vo))

hard to compute

Naive solutionis exponential in the number of classes
Can solve in O(K C?) where C is the number of classes using dynamic
programming (Forward-Backward algorithm). The same procedure allows us to

compute marginals, i.e. p(yx | X)
Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html



How do we do classification?

Two options:

cOption 1: At each k, pick y;, with the largest marginal
probability p(y,|X).i.e. y, = argmax, p(y;|X). If the
CRF is the true distribution, this minimizes classification
error on expectation.

°Option 2: Find the mode of the distribution, y* =
argmax,p(y|X). Also can be done with dynamic

programming using the Viterbi decoding algorithm.




How do we train the network?

As before, we train the network by minimizing NLL using
SGD. Our lossis, I(f (X),y) = —logp(y|X)

Need gradients with respect to the parameters of the unary
and pairwise potentials.

Do forward pass -> forward backward -> backprop




Gradient of unary potentials
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Taking this idea further

We are notlimited to linear chain CRFs.

Can use other structures. E.g. grid structure for pixels on image or general n-wise
structures (but gets expensive quickly).

In general:
o Training: Forward pass to get activations, forward-backwardto do inference, backprop to get
gradients.

o |f the gradientsinvolve an expectation overy that gets too expensive, could estimate using
sampling (we’ll see an examplein a couple of slides).

o Find the most likely sequence (decode) using a forward pass to compute activations and
Viterbi decoding

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html



Taking this idea further

Can use more complex graphical models with neural networks to parameterize the factors.

Examples:

Grid structure General pairwise structure
(pixels in image) (webpages sharing a link)

Adapted from Hugo Larochelle’s slides: http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html




Taking this idea further

Can use more complex graphical models with neural networks to parameterize the factors.

Examples: @ @ @ @ @ @

R

Dyna mic
CRF

Adapted from: https://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_LatentCRF.pdf



Discriminative vs generative models

Conditional random fields are discriminative. i.e. We optimize:

— log p(y|X)

Could also model the joint probability by optimizing:
—log p(y, X) = —log(p(y|X)p(X)) = —log p(y|X) — log p(X)

In small data settings / if you have a lot of unlabeled data, the latter
can be useful



Unsupervised learning
& Generative models




Restricted Boltzman Machine

Special case of the the Boltzman Machine. Restrict the connectivity
to make learning easier

In an RBM, the hidden units are conditionallyindependent given the
visible states. This makes sampling easier.

pair-wise factors
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Restricted Boltzman Machine

Special case of the the Boltzman Machine. Restrict the connectivity
to make learning easier

In an RBM, the hidden units are conditionallyindependent given the
visible states. This makes sampling easier.
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Inference
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Training a Restricted Boltzman Machine

As before, we minimize the average negative log-likelihood of the data:
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And then do stochasticgradient decent
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Contrastive Divergence

1. The expectation in the negative phaseis hard to compute... replace it with a point estimate.

B, [E)E(x, h)] _9E(%h())

39 60 Think “Monte Carlo
estimate with a
2. ObtainX by Gibbssamplingand update parameters. single sample”

3. Startthe Gibbs samplingchain at X(t)

fOOOOOO) S OOOOO0) Aside: Gibbs sampling

1. Start from some
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For more MCMC see: http://nbviewer.jupyter.org /github/jhartford/MCMC _talk/blob/master/MCMC%20talk.ipynb




Persistent Contrastive Divergence
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Contrastive Divergence
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Deep Belief Network

Top two layers for a Restricted Boltzman machine
3 2
p(h® h®)

Bottom three layers form a directed graphical

model (sigmoid belief network) where conditional
distributionsare as follows:

p(h§1) =1/h®) = sigm(W(l)Th(z) +bM)

Note differences with regular neural net
(sampling)




ayer-wise pre-training of a Deep Belief
Network

Idea: improve the prior distribution on the last layer by p(h), h®)) = p(hM|h®@) 37, 5, p(b?, h®))

adding another hidden layer
Train RBM using samples from layer below.

p(x,h)) = p(x|hM) 3°, ) p(h(V) h(?D)

p(x) = Eh(l) p(x, h(l))



Deep belief network

See: http://www.cs.toronto.edu/~hinton/adi/index.htm




