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The Problem - A Review

● Previously we looked at the general problem of 
handling high-dimensional integrals and 
unnormalized probability functions.
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● Markov chain Monte Carlo
● Use a transition                to move in the space.

○ Gibbs sampling.
○ Metropolis-Hastings algorithm.
○ Reversible Jump MCMC (non-parametric)                 
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● What if we can’t calculate              ? 
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The Problem

● Apparently applies to a lot of problems in 
biology.

● Given a parameter     you can simulate the 
execution.

●              Could be intractable or simply no 
mathematical derivation of it exists. 
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Discussion

● Randomly sampling    from the prior each time is 
‘too wasteful’.
○ We want to explore the space to accept more often.
○ Sampling from the prior does not incorporate current 

observations.
● How do we choose                       ? 
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1. Propose
2. Simulate
3. If 

a. Accept      with probability
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● Let’s assume
○                       is known.
○                       is unknown.

1.
2.

○
○
○ else go to 2.          
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Discussion

Pros
● Likelihood is not needed.
● Easy to implement and parallelize.

Cons
● Lot’s of tuning.
● For complex problems, sampling from the prior is frustrating because it does not 

incorporate the evidence.
● How good is our approximation?



Thank you!
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