Alireza Shafaei - April 2016

$\mathcal{P}(\theta|\mathcal{D}) = \frac{\mathcal{P}(\mathcal{D}|\theta)\pi(\theta)}{\mathcal{P}(\mathcal{D})} \propto \mathcal{P}(\mathcal{D}|\theta)\pi(\theta)$

$$\mathcal{P}(\theta|\mathcal{D}) = rac{\mathcal{P}(\mathcal{D}|\theta)\pi(\theta)}{\mathcal{P}(\mathcal{D})} \propto \mathcal{P}(\mathcal{D}|\theta)\pi(\theta)$$

 $\mathcal{P}(\mathcal{D}) = \int_{\Theta} \mathcal{P}(\mathcal{D}|\theta)\pi(\theta) \,\mathrm{d}\theta$

• Previously we looked at the general problem of handling **high-dimensional integrals** and **unnormalized probability** functions.

$$\mathcal{P}(x) = \frac{1}{Z} p^*(x)$$

- Rejection Sampling Given $p^*(x), q(x), M \text{ s.t.} \frac{p^*(x)}{q(x)} \le M \forall x.$ $x \sim q(x)$
 - Accept x with probability

 $\frac{p^*(x)}{M \cdot q(x)}$

$$\int_x f(x) p(x) \,\mathrm{d}x$$

$$\int_{x} f(x)p(x) \, \mathrm{d}x = \frac{\int_{x} f(x)p^{*}(x) \, \mathrm{d}x}{\int_{x} p^{*}(x) \, \mathrm{d}x}$$

$$\int_{x} f(x)p(x) \, \mathrm{d}x = \frac{\int_{x} f(x)p^{*}(x) \, \mathrm{d}x}{\int_{x} p^{*}(x) \, \mathrm{d}x} = \frac{\int_{x} f(x)\frac{p^{*}(x)}{q(x)}q(x) \, \mathrm{d}x}{\int_{x} \frac{p^{*}(x)}{q(x)}q(x) \, \mathrm{d}x}$$

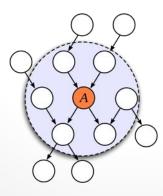
$$\int_{x} f(x)p(x) \, \mathrm{d}x = \frac{\int_{x} f(x)p^{*}(x) \, \mathrm{d}x}{\int_{x} p^{*}(x) \, \mathrm{d}x} = \frac{\int_{x} f(x)\frac{p^{*}(x)}{q(x)}q(x) \, \mathrm{d}x}{\int_{x} \frac{p^{*}(x)}{q(x)}q(x) \, \mathrm{d}x}$$

$$\int_{x} f(x)p(x) \, \mathrm{d}x \approx \frac{\sum_{l=1}^{L} f(x_{l}) \frac{p^{*}(x_{l})}{q(x_{l})}}{\sum_{l=1}^{L} \frac{p^{*}(x_{l})}{q(x_{l})}}$$

• Markov chain Monte Carlo

- Markov chain Monte Carlo
- Use a transition $q(\theta^{t+1}|\theta^t)$ to move in the space.

- Markov chain Monte Carlo
- Use a transition q(θ^{t+1}|θ^t) to move in the space.
 Gibbs sampling.



- Markov chain Monte Carlo
- Use a transition $q(\theta^{t+1}|\theta^t)$ to move in the space.
 - Gibbs sampling.
 - Metropolis-Hastings algorithm.

- Markov chain Monte Carlo
- Use a transition $q(\theta^{t+1}|\theta^t)$ to move in the space.
 - Gibbs sampling.
 - Metropolis-Hastings algorithm.
 - Reversible Jump MCMC (non-parametric)

$\mathcal{P}(\theta|\mathcal{D}) = \frac{\mathcal{P}(\mathcal{D}|\theta)\pi(\theta)}{\mathcal{P}(\mathcal{D})} \propto \mathcal{P}(\mathcal{D}|\theta)\pi(\theta)$

$$\mathcal{P}(\theta|\mathcal{D}) = \frac{\mathcal{P}(\mathcal{D}|\theta)\pi(\theta)}{\mathcal{P}(\mathcal{D})} \propto \mathcal{P}(\mathcal{D}|\theta)\pi(\theta)$$

• What if we can't calculate $\mathcal{P}(\mathcal{D}|\theta)$?

• Apparently applies to a lot of problems in biology.

The Problem

- Apparently applies to a lot of problems in biology.
- Given a parameter θ you can simulate the execution.

The Problem

- Apparently applies to a lot of problems in biology.
- Given a parameter θ you can simulate the execution.
- $\mathcal{P}(\mathcal{D}|\theta)$ Could be intractable or simply no mathematical derivation of it exists.

1. Draw $\theta \sim \pi(\theta)$

1. Draw $\theta \sim \pi(\theta)$ 2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot|\theta)$

- 1. Draw $\theta \sim \pi(\theta)$
- 2. Simulate $\tilde{\mathcal{D}} \sim \mathcal{P}(\cdot|\theta)$
- 3. Accept if $\rho(\mathcal{D}, \tilde{\mathcal{D}}) < \epsilon$

- 1. Draw $\theta \sim \pi(\theta)$ 2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot|\theta)$
- 3. Accept if $\rho(\mathcal{D}, \tilde{\mathcal{D}}) < \epsilon$
- $\epsilon \to \infty \Rightarrow \theta \sim \pi(\theta)$

- 1. Draw $\theta \sim \pi(\theta)$ 2. Simulate $\tilde{D} \sim \mathcal{P}(\cdot|\theta)$
- 3. Accept if $\rho(\mathcal{D}, \tilde{\mathcal{D}}) < \epsilon$

•
$$\epsilon \to \infty \Rightarrow \theta \sim \pi(\theta)$$

• $\epsilon \to 0 \Rightarrow \theta \sim \mathcal{P}(\theta|\mathcal{D})$

- 1. Draw $\theta \sim \pi(\theta)$
- 2. Simulate $\tilde{\mathcal{D}} \sim \mathcal{P}(\cdot|\theta)$
- 3. Accept if $\rho(\mathcal{S}(\mathcal{D}), \mathcal{S}(\tilde{\mathcal{D}})) < \epsilon$

•
$$\epsilon \to \infty \Rightarrow \theta \sim \pi(\theta)$$

• $\epsilon \to 0 \Rightarrow \theta \sim \mathcal{P}(\theta|\mathcal{D})$

- Randomly sampling θ from the prior each time is 'too wasteful'.
 - We want to explore the space to accept more often.

- Randomly sampling θ from the prior each time is 'too wasteful'.
 - We want to explore the space to accept more often.
 - Sampling from the prior does not incorporate current observations.

- Randomly sampling θ from the prior each time is 'too wasteful'.
 - We want to explore the space to accept more often.
 - Sampling from the prior does not incorporate current observations.
- How do we choose $\rho(\cdot, \cdot), \mathcal{S}(\cdot), \epsilon$?

Approximate MCMC

1. Propose $\theta' \sim Q(\theta'|\theta)$

Approximate MCMC

1. Propose $\theta' \sim Q(\theta'|\theta)$ 2. Simulate $\tilde{\mathcal{D}} \sim \mathcal{P}(.|\theta')$

Approximate MCMC

- 1. Propose $\theta' \sim Q(\theta'|\theta)$
- 2. Simulate $\tilde{\mathcal{D}} \sim \mathcal{P}(.|\theta')$
- 3. If $\rho(\mathcal{S}(\mathcal{D}), \mathcal{S}(\tilde{\mathcal{D}})) < \epsilon$
 - a. Accept θ' with probability

$$\min(1, \frac{\pi(\theta')Q(\theta'|\theta)}{\pi(\theta)Q(\theta|\theta')})$$

• Let's assume $\theta = (\theta_1, \theta_2)$ $\circ \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known. $\circ \mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.

- Let's assume $\theta = (\theta_1, \theta_2)$ $\circ \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known. $\circ \mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.
- 1. $\theta_1^{t+1} \sim \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$

- Let's assume $\theta = (\theta_1, \theta_2)$ $\circ \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known. $\circ \mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.
- 1. $\theta_1^{t+1} \sim \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ 2. $\theta_2^* \sim \pi(\theta_2)$

- Let's assume $\theta = (\theta_1, \theta_2)$ $\circ \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known. $\circ \mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.
- 1. $\theta_1^{t+1} \sim \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ 2. $\theta_2^* \sim \pi(\theta_2)$ $\circ \quad \tilde{\mathcal{D}} \sim \mathcal{P}(.|\theta_1^{t+1}, \theta_2^*)$

- Let's assume $\theta = (\theta_1, \theta_2)$ • $\mathcal{P}(\theta_1 | \mathcal{D}, \theta_2)$ is known. • $\mathcal{P}(\theta_2 | \mathcal{D}, \theta_1)$ is unknown.
- $\begin{array}{ll} 1. & \theta_1^{t+1} \sim \mathcal{P}(\theta_1 | \mathcal{D}, \theta_2) \\ 2. & \theta_2^* \sim \pi(\theta_2) \\ & \circ & \tilde{\mathcal{D}} \sim \mathcal{P}(. | \theta_1^{t+1}, \theta_2^*) \\ & \circ & \rho(\mathcal{S}(\mathcal{D}), \mathcal{S}(\tilde{\mathcal{D}})) < \epsilon \Rightarrow \theta_2^{t+1} = \theta_2^* \\ & \circ & \text{else go to } 2. \end{array}$

Pros

• Likelihood is not needed.

Pros

- Likelihood is not needed.
- Easy to implement and parallelize.

Pros

- Likelihood is not needed.
- Easy to implement and parallelize.

Cons

• Lot's of tuning.

Pros

- Likelihood is not needed.
- Easy to implement and parallelize.

Cons

- Lot's of tuning.
- For complex problems, sampling from the prior is frustrating because it does not incorporate the evidence.

Pros

- Likelihood is not needed.
- Easy to implement and parallelize.

Cons

- Lot's of tuning.
- For complex problems, sampling from the prior is frustrating because it does not incorporate the evidence.
- How good is our approximation?

Thank you!

References

- 1. Wilkinson, Richard, and Simon Tavaré. "Approximate Bayesian Computation: a simulation based approach to inference."
- 2. https://en.wikipedia.org/wiki/Gibbs sampling
- 3. Barber, David. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

4.