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What happened on MLRG

« Overparameterized deep networks can easily fit random labels
« Overparameterized neural nets lead to generalization bounds
« Regularization helps with test set generalization performance but

doesn’t affect generalization bounds
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Understanding deep learning requires rethinking generalization, Zhang et al.
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Key contributions

Empirical study on the drawback of large-batch (LB) methods vs small-batch (SB)
Empirical study of sharpness of minimizers
Generalization gap is correlated with sharpness of minimizers

Some attempts to improve performance of large-batch



SGD

» Theoretical guarantee

« Convergence to minimizers of strongly-convex functions and to stationary points for non-
convex functions (Bottou et al., 2016)

« Saddle-point avoidance (Ge et al., 2015; Lee et al., 2016)

« The sequential nature of SGD, limits parallelization.

 Increasing batch-size would improve parallelization (assuming enough processing cores),
but degrades performance on test-test (generalization gap)



Notations

Non-convex optimization

ZIZ’GR”

min  f(2) = 223 fi(@)

fi : loss function for data point i
x IS the vector of weights being optimized over each iteration using SGD
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1€ By

a step size
| By | batch size at iteration k
M dataset size



Empirical Settings

# Data Points
Dataset Data Set Train ‘ Test # Features | # Classes
MNIST 60000 10000 28 x 28 10
TIMIT 721329 | 310621 360 1973
CIFAR-10 | 50000 10000 32 x 32 10
Network Archltectures CIFAR-100 | 50000 10000 32 x 32 100
* F1:5 hidden Iayers Name | Network Type Data set
« F2: 7 hidden layers I Fully Connected MNIST
. . Fy Fully Connected TIMIT
C1 and C3: AlexNet 1 (Shallow) Convolutional | CIFAR-10
e C2and C4: VGG 'y (Deep) Convolutional CIFAR-10
@ (Shallow) Convolutional | CIFAR-100
C'y (Deep) Convolutional CIFAR-100
Batch-size

« Small-batch (SB): |B| = 256
« Large-batch (LB): [B| = M/10

ADAM as the SGD optimizer
Softmax with cross-entropy loss
All experiments are repeated 5 times (mean + std reported)



Results

» All experiments repeated 5 times from uniformly distributed random starting points

Training Accuracy

SB

LB

Testing Accuracy

SB

LB

99.66% + 0.05%
99.99% + 0.03%
99.89% =+ 0.02%
99.99% + 0.04%
99.56% + 0.44%
99.10% + 1.23%

99.92% + 0.01%
98.35% + 2.08%
99.66% + 0.2%

99.99% + 0.01%
99.88% + 0.30%
99.57% + 1.84%

No statistically sig diff in training

98.03% £ 0.07%
64.02% + 0.2%
80.04% + 0.12%
89.24% + 0.12%
49.58% =+ 0.39%
63.08% + 0.5%

97.81% £ 0.07%
59.45% 4+ 1.05%
77.26% £ 0.42%
87.26% + 0.07%
46.45% =+ 0.43%
57.81% + 0.17%

Up to 5% drop in performance
(Generalization gap)



Conjectures

LB methods over-fit the model

LB methods are attracted to saddle points

LB methods lack the explorative properties of SB methods and tend to zoom-in on the
minimizer closest to the initial point

SB and LB methods converge to qualitatively different minimizers with differing
generalization properties.
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Sharpness of Minimizers

« Flat minimizer: the function varies slowly in a relatively large neighborhood of x

« Sharp minimizer: the function increases rapidly in a relatively small neighborhood of x

Training Function

.
! Testing Function
I

\Flgt_ﬁ;[{n;r;lum Sl\lvarp Minimum
The large sensitivity of the training function at a sharp minimizer negatively impacts the ability of the trained
model to generalize on new data

Minimum Description Length (MDL): Statistical models that are less complex (can be described with less
precision), generalize better (Rissanen, 1983).

Low bias, low vanance

y

High variance l High bias
. y .
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Hochreiter and Schmidhuber. Flat minima. Neural Computation. 1997. overfitting underfitting Good balance



Maln observation

The lack of generalization ability is due to the fact that large-batch methods tend to converge
to sharp minimizers of the training function. These minimizers are characterized by a signif-
icant number of large positive eigenvalues in V2 f(z), and tend to generalize less well. In
contrast, small-batch methods converge to flat minimizers characterized by having numerous
small eigenvalues of V2 f (). We have observed that the loss function landscape of deep neural
networks 1s such that large-batch methods are attracted to regions with sharp minimizers and
that, unlike small-batch methods, are unable to escape basins of attraction of these minimizers.

Training Function

L]
! Testing Function

Flgt-Minimum Sharp Minimum




Sharpness Visualized in 1-D (coodfellow et al., 2014b)

flaz; +(1—a)}) ac[-L2

12 100 14 : 100
S /w\
1 12H — = At [\ i
10 180 : {80
wl /N T
> 81 - e
= {60 -, S s L : - 160 .
2 . L R S S L WA S 2
w 6 5 i 5
2 g @ el N s A I S e, 5
° 140 < < RN : 1 a 3 140 =
O 4L o : : ‘ : ;
R
420 420
2k 2 N S e T T e |
o 0 0 ! L ‘ : L 0
-1.0 2.0 -1.0 . . 0.5 1.0 1.5 2.0
alpha
(b) F3
Training Accuracy Testing Accuracy
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Sharpness Visualized in 1-D (coodfellow et al., 2014b)
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Sharpness Metric: Sensitivity measure

« Exploring a small neighborhood of a solution and computing the largest value that the
function f can attain in that neighborhood.

Specifically, let C. denote a box around the solution over which the maximization of f is performed,
and let A € R"*P be the matrix defined above. In order to ensure invariance of sharpness to problem
dimension and sparsity, we define the constraint set C. as:

Ce={z€R?: —e(|(AT2)i| + 1) <z < e(|(AT2)i| +1) Vie{l,2,---,p}}, )

where A1 denotes the pseudo-inverse of A. Thus e controls the size of the box, We can now define
our measure of sharpness (or sensitivity).

Metric 2.1. Given x € R", ¢ > 0 and A € R"*P, we define the (C., A)-sharpness of f at x as:

(maxyec, f(z + Ay)) — f(z)
1+ f(x)

x 100. (4)

Cbll,f (67 A) =




Sharpness Metric: Sensitivity measure

(max,ec. f(x + Ay)) — f(x)

T+ f(2) x 100

Cb:gsf (E: A) =

e 2 scenarios:
« Maximization over the entire space
A=1,
« Random manifold:
Apxp Matrix, randomly generated
p: dimension of manifold (here p=100)

e e=1e—3 and e=5e—-5

Table 3: Sharpness of Minima in Full Space; € is defined in (3).

e=10"3 e=5-10"*
SB LB SB LB
Fy | 1.23+£0.83 | 205.14 £69.52 | 0.61 £0.27 | 42.90 £ 17.14
Fo | 1.394+0.02 | 310.64 £ 38.46 | 0.90 & 0.05 93.15 £ 6.81
C7 | 2858 £3.13 | 707.23 £43.04 | 7.08 £0.88 | 227.31 4+ 23.23
Cs | 8.68+1.32 | 925.324+38.29 | 2.07+0.86 | 175.31 + 18.28
Cs3 | 29.85+5.98 | 258.75+8.96 | 856 +0.99 | 105.11 +13.22
Cy | 12.83 +£3.84 | 421.84 +36.97 | 4.07 £ 0.87 | 109.35 = 16.57

Table 4: Sharpness of Minima in Random Subspaces of Dimension 100

e=1073 €=5-10""
SB LB SB LB
Fy [ 0114£000 [ 922+056 [0.06£0.00 | 9.17+0.14
Fy | 029+40.02 | 23.63+£0.54 | 0.05£0.00 | 6.28+0.19
Cp | 218+£0.23 | 137.254+21.60 | 0.71£0.15 | 29.50 & 7.48
Cy | 0.95+0.34 | 25.09+2.61 | 0.31+0.08| 582+0.52
Cs | 17.02+£2.20 | 236.03 & 31.26 | 4.03 4 1.45 | 86.96 + 27.39
Cy | 6.05+1.13 | 72.99+10.96 | 1.8940.33 | 19.85 +4.12




Hesslan-based Analysis of Large Batch Training and
Robustness to Adversaries (Yao et al. NeurlPS 2018)

 Directly computing the spectrum of the true Hessian, and show that large-batch gets
trapped in areas with noticeably larger spectrum

* Models trained with large batch size are significantly more prone to adversarial attacks

107 ; 0
] Batch Acc. Al

16 100 (77.68)  0.64 (32.78)
32 100 (76.77) | 0.97 (45.28)

10 S 64 | 100 (77.32)  0.77 (48.06)
3 ,E 128 100 (78.84) 1.33 (137.5)
g O 256 100 (78.54)  3.34 (338.3)
> 1004 3 512 100 (79.25) | 16.88 (883.6)
- ] 1024 | 100 (78.50) 51.67 (2372)
2048 100 (77.31) | 80.18 (3769 )

1o-1- Test result is given in parentheses

0 2 4 6 8 10 12 14 16 18 20
i-th Eigenvalue



Sharpness of Minima: Sensitivity measure

» Sharp minimizers DO NOT resemble a cone
« Function does not increase rapidly along all directions.
* |t rises steeply only along a small dimensional subspace (e.g. 5% of the whole space)

« On most other directions, the function is relatively flat
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Warm-started Large-batch

Warme-start the training with 0 to 100 epochs of small-batch

Continue with large-batch training until convergence.
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Note: Dynamic sampling where the batch-size is increased gradually (Byrd et al., 2012; Friedlander & Schmidt, 2012)



Distance of the Converged Optimizer
to the Initial Point

* It has been speculated that LB methods tend to be attracted to minimizers close to the

starting point x0, whereas SB methods move farther away.

« Observed that the ratio of ||z} — z¢||2 and ||z} — z¢]|2 was in the range of 3-10.



Sharpness Vs. Loss

* Near the initial point, SB and LB method yield similar values of sharpness.

* As the loss function reduces,

 the sharpness of LB increases,
* the sharpness of SB stays relatively constant initially and then reduces
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(Appendix)

So, what Is the solution?

(of course, except for reducing the batch-size!)



(Appendix)

Mitigating the Generalization Gap

Data Augmentation

« Without Augmentation

« With Augmentation
 horizontal reflections,
« random rotations up to 10

« random translation of up to 0.2
times the size of the image

SB

Testing Accuracy

LB

Sharpness (LB method)

e =103

e="5-10"4

80.04% =+ 0.12%
89.24% + 0.12%
49.58% + 0.39%
63.08% + 0.5%

77.26% =+ 0.42%
87.26% £ 0.07%
46.45% + 0.43%
57.81% + 0.17%

Testing Accuracy

Baseline (SB)

Augmented LB

707.23 £43.04
025.32 + 38.29
258.75 £ 8.96
421.84 £ 36.97

227.31 £ 23.23
175.31 £ 18.28
105.11 = 13.22
109.35 £ 16.57

Sharpness (LB method)

e=10"3

e=05-10"1%

h
C,
Cs

Al

A 4:

83.63% £ 0.14%
89.82% £ 0.12%
54.55% £ 0.44%
63.05% £ 0.5%

82.50% £ 0.67%
90.26% £ 1.15%
53.03% %= 0.33%

65.88 +0.13%

231.77 £ 30.50
468.65 £ 47.86
103.68 = 11.93
271.06 £ 29.69

45.89 4+ 3.83
105.22 4+ 19.57
37.67 & 3.46
45.31 +5.93



(Appendix)

Mitigating the Generalization Gap
Conservative Training (LI et al., 2014)

Sharpness (LB method)

Testing Accuracy

« Without Conservative training Name | SB LB c— 103 c—15.10—4
Fy 98.03% £+ 0.07% | 97.81% +0.07% | 205.14 + 69.52 12.90 +17.14
Fy 64.02% 4+ 0.2% | 59.45% % 1.05% | 310.64 + 38.46 93.15 + 6.81
o 80.04% 4 0.12% | 77.26% 4+ 0.42% | 707.23 +43.04 | 227.31 + 23.23
Co 89.24% + 0.12% | 87.26% +0.07% | 925.32 +£38.29 | 175.31 + 18.28
C3 49.58% + 0.39% | 46.45% + 0.43% | 258.75 + 8.96 105.11 4 13.22
Cy 63.08% +0.5% | 57.81% + 0.17% | 421.84 +36.97 | 109.35+ 16.57
« With Conservative training:
* better utilize a batch before SN o LB method)
1 esting Accuracy drpness metho
mqvmg (.)ﬂtO t_he next one. Baseline (SB) Conse}wative LB €= 1(1;[_3 e=>5-10"*
* Using 3 iterations of ADAM F, | 08.03% £0.07% | 98.12% £0.01% | 232.25 £ 63.81 | 46.02 £ 12.58
e« 1=1e—3 Fy | 64.02% +£02% | 61.94% +1.10% | 928.40£51.63 | 190.77 & 25.33
Cy | 80.04% £ 0.12% | 78.41% +£0.22% | 520.34+34.91 | 171.19 +15.13
» Solve this proximal sub-problem Cy | 89.24% +0.05% | 88.495% + 0.63% | 632.01 £ 208.01 | 108.88 4+ 47.36

1 A f
Tyl = argmin —— E filx) + Sl — a3
T ‘Bk‘ . 2
i€ By,

49.58% %+ 0.39%
63.08% £ 0.10%

45.98% =+ 0.54%
62.51 = 0.67

337.92 £ 33.09
354.94 4 20.23

110.69 4 3.88
68.76 = 16.29



(Appendix)

ldealized Performance Model

By B
: I)— Is————
For LB to be faster than SB 5 < Pf.(P)

Let I, and [; : number of iterations required by SB and LB methods to converge
Let B; and B; : Batch sizes of SB and LB methods

P :Number of processors

fs(P): relative parallel efficiency of the SB method
* f1(P): parallel efficiency of the LB method (assumed to be equal to 1.0)



Open Questions

a) Can one prove that large-batch (LB) methods typically converge to sharp minimizers of deep learning training
functions?

b) What is the relative density of the two kinds of minima?

c) Can one design neural network architectures for various tasks that are suitable to the properties of LB
methods?

d) Can the networks be initialized in a way that enables LB methods to succeed?

e) Is it possible, through algorithmic or regulatory means to steer LB methods away from sharp minimizers?

« How does very small batches affect generalization?

* Response on Open Review: From our preliminary experiments, it seems that there is no significant benefit from reducing

batch-sizes to a very small value (8 and 16 are similar to 256)



Main Takeaways

Based on this research’s empirical observations,

» Large-batch (LB) methods
» Lack the explorative properties of small-batch (SB) methods,
« Tend to zoom-in on the minimizer closest to the initial point

« converge to sharp minimizers with differing generalization properties
* The generalization gap is correlated with the sharpness of the minimizers

« Data augmentation and Conservative training are ineffective in reducing sharpness

Thank you



