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What happened on MLRG

• Overparameterized deep networks can easily fit random labels

• Overparameterized neural nets lead to generalization bounds

• Regularization helps with test set generalization performance but 
doesn’t affect generalization bounds

Presentation by Jason Hartford, October 2
Understanding deep learning requires rethinking generalization, Zhang et al.



Key contributions

• Empirical study on the drawback of large-batch (LB) methods vs small-batch (SB)

• Empirical study of sharpness of minimizers

• Generalization gap is correlated with sharpness of minimizers

• Some attempts to improve performance of large-batch 



SGD

• Theoretical guarantee

• Convergence to minimizers of strongly-convex functions and to stationary points for non-
convex functions (Bottou et al., 2016) 

• Saddle-point avoidance (Ge et al., 2015; Lee et al., 2016)

• The sequential nature of SGD, limits parallelization. 

• Increasing batch-size would improve parallelization (assuming enough processing cores), 
but degrades performance on test-test (generalization gap)



Notations

Non-convex optimization

𝑓𝑖 : loss function for data point 𝑖

𝑥 is the vector of weights being optimized over each iteration using SGD

𝛼 step size

|𝐵𝑘| batch size at iteration 𝑘

𝑀 dataset size



Empirical Settings

• Dataset

• Network Architectures
• F1: 5 hidden layers

• F2: 7 hidden layers

• C1 and C3: AlexNet

• C2 and C4: VGG

• Batch-size
• Small-batch (SB): 𝐵 = 256
• Large-batch (LB): 𝐵 = 𝑀/10

• ADAM as the SGD optimizer

• Softmax with cross-entropy loss

• All experiments are repeated 5 times (mean ± std reported)



Results

• All experiments repeated 5 times from uniformly distributed random starting points

No statistically sig diff in training Up to 5% drop in performance
(Generalization gap)



Conjectures

1. LB methods over-fit the model

2. LB methods are attracted to saddle points

3. LB methods lack the explorative properties of SB methods and tend to zoom-in on the 

minimizer closest to the initial point

SB and LB methods converge to qualitatively different minimizers with differing 

generalization properties.



Observation: No overfitting



Sharpness of Minimizers

• Flat minimizer: the function varies slowly in a relatively large neighborhood of ҧ𝑥

• Sharp minimizer: the function increases rapidly in a relatively small neighborhood of ො𝑥

✓ The large sensitivity of the training function at a sharp minimizer negatively impacts the ability of the trained 

model to generalize on new data

✓ Minimum Description Length (MDL): Statistical models that are less complex (can be described with less 

precision), generalize better (Rissanen, 1983).

Hochreiter and Schmidhuber. Flat minima. Neural Computation. 1997.



Main observation



Sharpness Visualized in 1-D (Goodfellow et al., 2014b)



Sharpness Visualized in 1-D (Goodfellow et al., 2014b)



Curvilinear path



Sharpness Metric: Sensitivity measure

• Exploring a small neighborhood of a solution and computing the largest value that the 
function 𝑓 can attain in that neighborhood.



Sharpness Metric: Sensitivity measure 

• 2 scenarios:

• Maximization over the entire space

𝐴 = 𝐼𝑛
• Random manifold:

𝐴𝑛×𝑝 matrix, randomly generated 

𝑝: dimension of manifold (here p=100)

• 𝜖 = 1𝑒 − 3 and   𝜖 = 5𝑒 − 5



Hessian-based Analysis of Large Batch Training and
Robustness to Adversaries (Yao et al. NeurIPS 2018)

• Directly computing the spectrum of the true Hessian, and show that large-batch gets 
trapped in areas with noticeably larger spectrum

• Models trained with large batch size are significantly more prone to adversarial attacks

Test result is given in parentheses



Sharpness of Minima: Sensitivity measure 

• Sharp minimizers DO NOT resemble a cone

• Function does not increase rapidly along all directions. 

• It rises steeply only along a small dimensional subspace (e.g. 5% of the whole space)

• On most other directions, the function is relatively flat



Batch-size Vs. 
Sharpness and Accuracy



Warm-started Large-batch
Warm-start the training with 0 to 100 epochs of small-batch

Continue with large-batch training until convergence.

Note: Dynamic sampling where the batch-size is increased gradually (Byrd et al., 2012; Friedlander & Schmidt, 2012)



Distance of the Converged Optimizer 
to the Initial Point

• It has been speculated that LB methods tend to be attracted to minimizers close to the 

starting point x0, whereas SB methods move farther away.

• Observed that the ratio of was in the range of 3–10.



Sharpness Vs. Loss
• Near the initial point, SB and LB method yield similar values of sharpness. 

• As the loss function reduces, 

• the sharpness of LB increases, 

• the sharpness of SB stays relatively constant initially and then reduces



So, what is the solution?
(of course, except for reducing the batch-size!)

(Appendix)



Mitigating the Generalization Gap
Data Augmentation

• Without Augmentation

• With Augmentation

• horizontal reflections,

• random rotations up to 10

• random translation of up to 0.2 
times the size of the image

(Appendix)



Mitigating the Generalization Gap
Conservative Training (Li et al., 2014)

• Without Conservative training

• With Conservative training:

• better utilize a batch before 
moving onto the next one.

• Using 3 iterations of ADAM

• 𝜆 = 1𝑒 − 3

• Solve this proximal sub-problem

(Appendix)



Idealized Performance Model

• Let 𝐼𝑠 and 𝐼𝑙 : number of iterations required by SB and LB methods to converge

• Let 𝐵𝑠 and 𝐵𝑙 : Batch sizes of SB and LB methods

• 𝑃: Number of processors

• 𝑓𝑠 𝑃 : relative parallel efficiency of the SB method

• 𝑓𝑙 𝑃 : parallel efficiency of the LB method (assumed to be equal to 1.0)

For LB to be faster than SB:

(Appendix)



Open Questions

a) Can one prove that large-batch (LB) methods typically converge to sharp minimizers of deep learning training 

functions? 

b) What is the relative density of the two kinds of minima?

c) Can one design neural network architectures for various tasks that are suitable to the properties of LB 

methods?

d) Can the networks be initialized in a way that enables LB methods to succeed?

e) Is it possible, through algorithmic or regulatory means to steer LB methods away from sharp minimizers?

• How does very small batches affect generalization?

• Response on Open Review: From our preliminary experiments, it seems that there is no significant benefit from reducing 

batch-sizes to a very small value (8 and 16 are similar to 256)



Main Takeaways

Based on this research’s empirical observations, 

• Large-batch (LB) methods 

• Lack the explorative properties of small-batch (SB) methods, 

• Tend to zoom-in on the minimizer closest to the initial point

• converge to sharp minimizers with differing generalization properties

• The generalization gap is correlated with the sharpness of the minimizers

• Data augmentation and Conservative training are ineffective in reducing sharpness

Thank you


