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Why this paper?

Relevancy/ interest

� link with VRRG and game theory

� applications in RL

� composition with a linear map problems
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Variance reduction reading group/ game theory

� Victor covered another primal-dual method (e.g. SDCA)

� Ties in with the discussion on Fenchel conjugates

� Find minimum of an objective ⇔ find saddle-point in a minmax problem

� Solve optimization problem ⇔ solve a two-player game
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Reinforcement learning

Example of an application

� RL task of estimating the value function V π(s) of a policy π given state s

� Use linear approximation Ṽ π(s) with model parameters x

� Learn x by minimizing the mean squared error based on a norm defined by

a matrix containing feature vectors of states visited

� Requires inverting a (potentially large) matrix

� Avoid this by solving an equivalent saddle-point problem
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Composition with a linear map problems

� minx f (Ax) where A is a linear map

� Special case of convex-concave saddle-point problem with bilinear coupling

� APDG is a variant of the forward-backward algorithm

� Solves objectives in the form of a sum of composite convex functions
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What is this paper about?

Title of the paper

� Accelerated Primal-Dual Gradient Method (APDG) for

� Smooth and Convex-Concave Saddle-Point Problems with

� Bilinear Coupling
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APDG

accelerated

� convergence rate could be expressed in terms of condition number κ = L/µ

� generally, non-accelerated =⇒ O(κ), accelerated =⇒ O(
√
κ)

� many ways to accelerate, paper’s method is similar to Nesterov’s

primal-dual gradient method

� takes steps using both primal and dual variables

� takes steps using the negative gradient
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Saddle-Point Problems

Objective

min
x∈Rdx

max
y∈Rdy

F (x , y) : Rdx × Rdy → R

A saddle point (x∗, y∗) of F satisfies

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x , y∗)

for any (x , y)
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Smooth, Convex-Concave

Lxy -smooth means (Lxy > 0)

∥∇xF (x , y1)−∇xF (x , y2)∥ ≤ Lxy∥y1 − y2∥

∥∇yF (x1, y)−∇yF (x2, y)∥ ≤ Lxy∥x1 − x2∥

Convex-concave means for any point (x∗, y∗)

x 7→ F (x , y∗) is convex

y 7→ F (x∗, y) is concave
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Bilinear Coupling Problems

min
x∈Rdx

max
y∈Rdy

F (x , y) = f (x) + y⊺Ax − g(y)

where f (x) : Rdx → R, g(y) : Rdy → R, A ∈ Rdx×dy

� A is a “coupling matrix” (that ties payoff of minimizer and maximizer)

� A is a matrix of the bilinear form

� paper has additional assumptions on A
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Summary

Contributions

� Two algorithms proposed

� APDG for smooth, convex-concave, saddle-point problems

with bilinear coupling

� Gradient Descent-Ascent Method with Extrapolation (GDAE)

for general smooth, convex-concave, saddle-point problems

� Algorithms allow for “direct” acceleration

� APDG convergence matches theoretical lower bound where known

� GDAE convergence nearly as good as SOTA
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APDG (Algorithm 1)
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APDG (Algorithm 1): Parameters
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APDG (Algorithm 1): Updates
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APDG (Algorithm 1): What is it trying to do?

Minmax problem

min
x∈Rdx

max
y∈Rdy

F (x , y) = f (x) + y⊺Ax − g(y)

Finding a saddle point (x∗, y∗) means satisfying first order optimality conditions∇xF (x∗, y∗) = ∇f (x∗) + A⊺y∗ = 0

∇yF (x∗, y∗) = −∇g(y∗) + Ax∗ = 0
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APDG (Algorithm 1): What is it trying to do?

Requires solving linear systemx+ = x − A⊺y+

y+ = y + Ax+

Closed form solution needs inverting a matrix in the form

(I + A⊺A) or (I + AA⊺)
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APDG (Algorithm 1): What is it trying to do?

Instead, introduce a new variable ym and solve iterativelyx+ = x − A⊺ym

y+ = y + Ax+

What to set ym? Paper suggests linear extrapolation step

ym = y + θ(y − y−)

where y− is the value at the iteration previous to y
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Results

APDG

� Optimal for

� strongly-convex-strongly-concave problems

� affinely constrained minimization case (i.e. minAx=b f (x)))

� Beats SOTA for

� strongly-convex-concave case (unknown lower bound)

� convex-concave case (unknown lower bound)

� Worse than SOTA for bilinear case

min
x∈Rdx

max
y∈Rdy

a⊺x + y⊺Ax − b⊺y
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Results
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Related topics

Operator splitting

� Suppose objective involves smooth f and possibly nonsmooth g

min
x∈Rn

f (x) + g(x)

� First-order optimality of x∗ and introduce λ > 0

0 ∈ λ∇f (x∗) + λ∂g(x∗)

� Can think of solution x∗ as the fixed point of

x 7→ proxλg (x − λ∇f (x)) for all λ > 0

which motivates the iterative approach
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Related topics

Fenchel game

� Can rewrite objective using its Fenchel conjugate

min
x

f (x) = min
x

max
y

⟨x , y⟩ − f ∗(y)

if f is convex, proper and closed.

� All players playing no-regret algorithms =⇒ converge to a Nash

equilibrium (in 2-player general sum game) =⇒ find saddle point

� Solve convex optimization problems using no-regret game dynamics
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Additional slides: application to RL

� Estimate value function of a policy π

V π(s) = E

[
∞∑
t=0

γtrt |s0 = s, π

]

with discount factor γ ∈ (0, 1), reward r , state s

� Use linear approximation of V π(s) = ϕ(s)⊺x instead where ϕ(s) is a

feature vector of state s and x is the model parameters

� Minimize mean squared projected Bellman error

min
x

∥Bx − b∥2C−1

requires inverting C =
∑n

t=1 ϕ(st)ϕ(st)
⊺

� Equivalently solve saddle-point problem

min
x

max
y

−2y⊺Bx − ∥y∥2C + 2b⊺y
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Additional slides: composition w/ linear map

� minz f (Az) where A is a linear map

� Rewrite as min-max problem

min
z

f (Az) ≡ min
x=Az

f (x) ≡ min
A−1x=z

f (x) ≡ min
x

max
y

f (x) + y⊺
(
A−1x − z

)
� Forward-backward algorithm for problems of the form

min
x∈H

m∑
i=1

gi (Lix)

where H and (G)1≤i≤m are Hilbert spaces, gi is proper lower

semi-continuous convex from Gi to (−∞,∞] and Li is a bounded linear

operator from H to Gi .
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Additional slides: operator splitting notes

0 ∈ λ∇f (x∗) + λ∂g(x∗) for all λ > 0

0 ∈ (λ∇f (x∗)− x∗) + (x∗ + λ∂g(x∗))

(Id − λ∇f )(x∗) ∈ (Id + λ∂g)(x∗)

x∗ ∈ (Id + λ∂g)−1(Id − λ∇f )(x∗)

Define proximal operator

proxλg (x) ≜ (Id + λ∂g)−1 (x)

x∗ is unique and so

x∗ = proxλg (x
∗ − λ∇f (x∗)) for all λ > 0

Hence x∗ is a fixed point of

x 7→ proxλg (x − λ∇f (x))
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