Kovalev et al. 2022. APDG

Machine Learning Reading Group Summer 2022

Betty Shea
2022-06-15

University of British Columbia

Why this paper?

Relevancy/ interest

- link with VRRG and game theory
- applications in RL
- composition with a linear map problems

Variance reduction reading group/ game theory

- Victor covered another primal-dual method (e.g. SDCA)
- Ties in with the discussion on Fenchel conjugates
- Find minimum of an objective \Leftrightarrow find saddle-point in a minmax problem
- Solve optimization problem \Leftrightarrow solve a two-player game

Example of an application

- RL task of estimating the value function $V^{\pi}(s)$ of a policy π given state s
- Use linear approximation $\tilde{V}^{\pi}(s)$ with model parameters x
- Learn x by minimizing the mean squared error based on a norm defined by a matrix containing feature vectors of states visited
- Requires inverting a (potentially large) matrix
- Avoid this by solving an equivalent saddle-point problem

Composition with a linear map problems

- $\min _{x} f(A x)$ where A is a linear map
- Special case of convex-concave saddle-point problem with bilinear coupling
- APDG is a variant of the forward-backward algorithm
- Solves objectives in the form of a sum of composite convex functions

What is this paper about?

Title of the paper

- Accelerated Primal-Dual Gradient Method (APDG) for
- Smooth and Convex-Concave Saddle-Point Problems with
- Bilinear Coupling
accelerated
- convergence rate could be expressed in terms of condition number $\kappa=L / \mu$
- generally, non-accelerated $\Longrightarrow O(\kappa)$, accelerated $\Longrightarrow O(\sqrt{\kappa})$
- many ways to accelerate, paper's method is similar to Nesterov's primal-dual gradient method
- takes steps using both primal and dual variables
- takes steps using the negative gradient

Saddle-Point Problems

Objective

$$
\min _{x \in \mathbb{R}^{d_{x}}} \max _{y \in \mathbb{R}^{d_{y}}} F(x, y): \mathbb{R}^{d_{x}} \times \mathbb{R}^{d_{y}} \rightarrow \mathbb{R}
$$

A saddle point $\left(x_{*}, y_{*}\right)$ of F satisfies

$$
F\left(x_{*}, y\right) \leq F\left(x_{*}, y_{*}\right) \leq F\left(x, y_{*}\right)
$$

for any (x, y)

Smooth, Convex-Concave

$L_{x y}$-smooth means $\left(L_{x y}>0\right)$

$$
\begin{aligned}
& \left\|\nabla_{x} F\left(x, y_{1}\right)-\nabla_{x} F\left(x, y_{2}\right)\right\| \leq L_{x y}\left\|y_{1}-y_{2}\right\| \\
& \left\|\nabla_{y} F\left(x_{1}, y\right)-\nabla_{y} F\left(x_{2}, y\right)\right\| \leq L_{x y}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

Convex-concave means for any point $\left(x_{*}, y_{*}\right)$

$$
\begin{aligned}
& x \mapsto F\left(x, y_{*}\right) \text { is convex } \\
& y \mapsto F\left(x_{*}, y\right) \text { is concave }
\end{aligned}
$$

Bilinear Coupling Problems

$$
\min _{x \in \mathbb{R}^{d_{x}}} \max _{y \in \mathbb{R}^{d_{y}}} F(x, y)=f(x)+y^{\top} A x-g(y)
$$

where $f(x): \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}, g(y): \mathbb{R}^{d_{y}} \rightarrow \mathbb{R}, A \in \mathbb{R}^{d_{x} x d_{y}}$

- A is a "coupling matrix" (that ties payoff of minimizer and maximizer)
- A is a matrix of the bilinear form
- paper has additional assumptions on A

Contributions

- Two algorithms proposed
- APDG for smooth, convex-concave, saddle-point problems with bilinear coupling
- Gradient Descent-Ascent Method with Extrapolation (GDAE) for general smooth, convex-concave, saddle-point problems
- Algorithms allow for "direct" acceleration
- APDG convergence matches theoretical lower bound where known
- GDAE convergence nearly as good as SOTA

APDG (Algorithm 1)

```
Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method
    Input: \(x^{0} \in \operatorname{range} \mathbf{A}^{\top}, y^{0} \in \operatorname{range} \mathbf{A}, \eta_{x}, \eta_{y}, \alpha_{x}, \alpha_{y}, \beta_{x}, \beta_{y}>0, \tau_{x}, \tau_{y}, \sigma_{x}, \sigma_{y} \in(0,1], \theta \in(0,1)\)
    \(x_{f}^{0}=x^{0}\)
    \(y_{f}^{0}=y^{-1}=y^{0}\)
    for \(k=0,1,2, \ldots\) do
        \(y_{m}^{k}=y^{k}+\theta\left(y^{k}-y^{k-1}\right)\)
        \(x_{g}^{k}=\tau_{x} x^{k}+\left(1-\tau_{x}\right) x_{f}^{k}\)
        \(y_{g}^{k}=\tau_{y} y^{k}+\left(1-\tau_{y}\right) y_{f}^{k}\)
        \(x^{k+1}=x^{k}+\eta_{x} \alpha_{x}\left(x_{g}^{k}-x^{k}\right)-\eta_{x} \beta_{x} \mathbf{A}^{\top}\left(\mathbf{A} x^{k}-\nabla g\left(y_{g}^{k}\right)\right)-\eta_{x}\left(\nabla f\left(x_{g}^{k}\right)+\mathbf{A}^{\top} y_{m}^{k}\right)\)
        \(y^{k+1}=y^{k}+\eta_{y} \alpha_{y}\left(y_{g}^{k}-y^{k}\right)-\eta_{y} \beta_{y} \mathbf{A}\left(\mathbf{A}^{\top} y^{k}+\nabla f\left(x_{g}^{k}\right)\right)-\eta_{y}\left(\nabla g\left(y_{g}^{k}\right)-\mathbf{A} x^{k+1}\right)\)
        \(x_{f}^{k+1}=x_{g}^{k}+\sigma_{x}\left(x^{k+1}-x^{k}\right)\)
        \(y_{f}^{k+1}=y_{g}^{k}+\sigma_{y}\left(y^{k+1}-y^{k}\right)\)
    end for
```


APDG (Algorithm 1): Parameters

```
Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method
    Input: \(x^{0} \in \operatorname{range} \mathbf{A}^{\top}, y^{0} \in\) range \(\mathbf{A}, \eta_{x}, \eta_{y}, \alpha_{x}, \alpha_{y} \mid \beta_{x}, \beta_{y}>0, \tau_{x}, \tau_{y}, \sigma_{x}, \sigma_{y} \in(0,1], \theta \in(0,1)\)
    \(x_{f}^{0}=x^{0} \quad\) overall learning rate weight for accelerated component
    \(y_{f}^{0}=y^{-1}=y^{0} \quad\) forward-backward parameter
    for \(k=0,1,2, \ldots\) do
        \(y_{m}^{k}=y^{k}+\theta\left(y^{k}-y^{k-1}\right)\) how much to extrapolate
        \(x_{g}^{k}=\tau_{x} x^{k}+\left(1-\tau_{x} x_{f}^{k}\right.\) how much acceleration
        \(y_{g}^{k}=\tau_{y} \|^{k}+\left(1-\tau_{y}\right) y_{f}^{k} \quad\) how much acceleration
        \(x^{k+1}=x^{k}+\eta_{\eta_{x}} \alpha_{x}\left(x_{g}^{k}-x^{k}\right)-\eta_{7} \beta_{x} \mathbf{A}^{\top}\left(\mathbf{A} x^{k}-\nabla g\left(y_{g}^{k}\right)\right)-\eta_{x}\left(\nabla f\left(x_{g}^{k}\right)+\mathbf{A}^{\top} y_{m}^{k}\right)\)
        \(\left.\left.\left.y^{k+1}=y^{k}+\eta_{u}{\alpha_{u}} y_{g}^{k}-y^{k}\right)-\eta_{y} \beta_{y} \mathbf{A}\left(\mathbf{A}^{\top} y^{k}+\nabla f\left(x_{g}^{k}\right)\right)-\eta_{y}\right\rangle \nabla g\left(y_{g}^{k}\right)-\mathbf{A} x^{k+1}\right)\)
        \(x_{f}^{k+1}=x_{g}^{k}+\sigma_{x}\left(x^{k+1}-x^{k}\right)\) how much momentum
        \(y_{f}^{k+1}=y_{g}^{k}+\sigma_{y}\left(y^{k+1}-y^{k}\right)\)
    end for
```


APDG (Algorithm 1): Updates

```
Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method
    Input: \(x^{0} \in \operatorname{range} \mathbf{A}^{\top}, y^{0} \in \operatorname{range} \mathbf{A}, \eta_{x}, \eta_{y}, \alpha_{x}, \alpha_{y}, \beta_{x}, \beta_{y}>0, \tau_{x}, \tau_{y}, \sigma_{x}, \sigma_{y} \in(0,1], \theta \in(0,1)\)
    \(x_{f}^{0}=x^{0}\)
    \(y_{f}^{0}=y^{-1}=y^{0}\)
    for \(k=0,1,2, \ldots\) do
        \(y_{m}^{k}=y^{k}+\theta\left(y^{k}-y^{k-1}\right) \quad\) Linear extrapolation step on newly introduced variable
        \(x_{g}^{k}=\tau_{x} x^{k}+\left(1-\tau_{x}\right) x_{f}^{k}\)
        \(y_{g}^{k}=\tau_{y} y^{k}+\left(1-\tau_{y}\right) y_{f}^{k} \quad\) Acceleration
        \(x^{k+1}=x^{k}+\eta_{x} \alpha_{x}\left(x_{g}^{k}-x^{k}\right)-\eta_{x} \beta_{x} \mathbf{A}^{\top}\left(\mathbf{A} x^{k}-\nabla g\left(y_{g}^{k}\right)\right)-\eta_{x}\left(\nabla f\left(x_{g}^{k}\right)+\mathbf{A}^{\top} y_{m}^{k}\right)\) Forward-Backward
        \(y^{k+1}=y^{k}+\eta_{y} \alpha_{y}\left(y_{g}^{k}-y^{k}\right)-\eta_{y} \beta_{y} \mathbf{A}\left(\mathbf{A}^{\top} y^{k}+\nabla f\left(x_{g}^{k}\right)\right)-\eta_{y}\left(\nabla g\left(y_{g}^{k}\right)-\mathbf{A} x^{k+1}\right)\)
        \(x_{f}^{k+1}=x_{g}^{k}+\sigma_{x}\left(x^{k+1}-x^{k}\right) \quad\) Momentum
        \(y_{f}^{k+1}=y_{g}^{k}+\sigma_{y}\left(y^{k+1}-y^{k}\right)\)
    end for
```


APDG (Algorithm 1): What is it trying to do?

Minmax problem

$$
\min _{x \in \mathbb{R}^{d_{x}}} \max _{y \in \mathbb{R}^{d_{y}}} F(x, y)=f(x)+y^{\top} A x-g(y)
$$

Finding a saddle point $\left(x_{*}, y_{*}\right)$ means satisfying first order optimality conditions

$$
\left\{\begin{array}{l}
\nabla_{x} F\left(x_{*}, y_{*}\right)=\nabla f\left(x_{*}\right)+A^{\top} y_{*}=0 \\
\nabla_{y} F\left(x_{*}, y_{*}\right)=-\nabla g\left(y^{*}\right)+A x_{*}=0
\end{array}\right.
$$

APDG (Algorithm 1): What is it trying to do?

Requires solving linear system

$$
\left\{\begin{array}{l}
x^{+}=x-A^{\top} y^{+} \\
y^{+}=y+A x^{+}
\end{array}\right.
$$

Closed form solution needs inverting a matrix in the form

$$
\left(I+A^{\top} A\right) \text { or }\left(I+A A^{\top}\right)
$$

Instead, introduce a new variable y_{m} and solve iteratively

$$
\left\{\begin{array}{l}
x^{+}=x-A^{\top} y_{m} \\
y^{+}=y+A x^{+}
\end{array}\right.
$$

What to set y_{m} ? Paper suggests linear extrapolation step

$$
y_{m}=y+\theta\left(y-y^{-}\right)
$$

where y^{-}is the value at the iteration previous to y

APDG

- Optimal for
- strongly-convex-strongly-concave problems
- affinely constrained minimization case (i.e. $\left.\min _{A x=b} f(x)\right)$)
- Beats SOTA for
- strongly-convex-concave case (unknown lower bound)
- convex-concave case (unknown lower bound)
- Worse than SOTA for bilinear case

$$
\min _{x \in \mathbb{R}^{d_{x}}} \max _{y \in \mathbb{R}^{d_{y}}} a^{\top} x+y^{\top} A x-b^{\top} y
$$

Strongly-convex-strongly-concave case (Section 5.1)

Algorithm 1	$\mathcal{O}\left(\max \left\{\sqrt{\frac{L_{x}}{\mu_{x}}}, \sqrt{\frac{L_{y}}{\mu_{y}}}, \frac{L_{x y}}{\sqrt{\mu_{x} \mu_{y}}}\right\} \log \frac{1}{\epsilon}\right)$
Lower bound Zhang et al. (2021b)	$\mathcal{O}\left(\max \left\{\sqrt{\frac{L_{x}}{\mu_{x}}}, \sqrt{\frac{L_{y}}{\mu_{y}}}, \frac{L_{x y}}{\sqrt{\mu_{x} \mu_{y}}}\right\} \log \frac{1}{\epsilon}\right)$
DIPPA Xie et al. (2021)	$\overline{\mathcal{O}}\left(\max \left\{\sqrt[4]{\frac{L_{2}^{2} L_{y}}{\mu_{x}^{2} \mu_{y}}}, \sqrt[4]{\frac{L_{x} L_{2}^{2}}{\mu_{x} \mu_{y}^{2}}}, \frac{L_{x y}}{\sqrt{\mu_{x} \mu_{y}}}\right\} \log \frac{1}{\epsilon}\right)$
Proximal Best Response Wang \& Li (2020)	$\tilde{\mathcal{O}\left(\max \left\{\sqrt{\frac{L_{x}}{\mu_{x}}}, \sqrt{\frac{L_{y}}{\mu_{y}}}, \sqrt{\frac{L_{x y} L}{\mu_{x} \mu_{y}}}\right\} \log \frac{1}{\epsilon}\right)}$

Affinely constrained minimization case (Section 5.2)

Algorithm 1	$\mathcal{O}\left(\frac{L_{x y}}{\mu_{x y}} \sqrt{\frac{L_{x}}{\mu_{x}}} \log \frac{1}{\epsilon}\right)$
Lower bound Salim et al. (2021)	$\mathcal{O}\left(\frac{L_{x y}}{\mu_{x y}} \sqrt{\frac{L_{x}}{\mu_{x}}} \log \frac{1}{\epsilon}\right)$
OPAPC Kovalev et al. (2020)	$\mathcal{O}\left(\frac{L_{x y}}{\mu_{x y}} \sqrt{\frac{L_{x}}{\mu_{z}}} \log \frac{1}{\epsilon}\right)$

Strongly-convex-concave case (Section 5.3)

Algorithm 1	$\mathcal{O}\left(\max \left\{\frac{\sqrt{L_{x} L_{y}}}{\mu_{x y}}, \frac{L_{x y}}{\mu_{x y}} \sqrt{\frac{L_{x}}{\mu_{x}}}, \frac{L_{x y}^{2}}{\mu_{x y}^{2}}\right\} \log \frac{1}{\epsilon}\right)$
Lower bound	N / A
Alt-GDA Zhang et al. (2021a)	$\mathcal{O}\left(\max \left\{\frac{L^{2}}{\mu_{x y}^{2}}, \frac{L}{\mu_{x}}\right\} \log \frac{1}{\epsilon}\right)$
Bilinear case (Section 5.4)	
Algorithm 1	$\mathcal{O}\left(\frac{L_{x y}^{2}}{\mu_{x_{y}^{2}}^{2}} \log \frac{1}{\epsilon}\right)$
Lower bound Ibrahimet al. (2020)	$\mathcal{O}\left(\frac{L_{x y}}{\mu_{x y}} \log \frac{1}{\epsilon}\right)$
Azizian et al. (2020)	$\mathcal{O}\left(\frac{L_{x y}}{\mu_{x y}} \log \frac{1}{\epsilon}\right)$

Convex-concave case (Section 5.5)
Algorithm $1 \quad \mathcal{O}\left(\max \left\{\frac{\sqrt{L_{x} L_{y}} L_{x y}}{\mu_{x y}^{2}}, \frac{L_{x y}^{2}}{\mu_{x y}^{2}}\right\} \log \frac{1}{\epsilon}\right)$

Related topics

Operator splitting

- Suppose objective involves smooth f and possibly nonsmooth g

$$
\min _{x \in \mathbb{R}^{n}} f(x)+g(x)
$$

- First-order optimality of x_{*} and introduce $\lambda>0$

$$
0 \in \lambda \nabla f\left(x_{*}\right)+\lambda \partial g\left(x_{*}\right)
$$

- Can think of solution x_{*} as the fixed point of

$$
x \mapsto \operatorname{prox}_{\lambda g}(x-\lambda \nabla f(x)) \text { for all } \lambda>0
$$

which motivates the iterative approach

Fenchel game

- Can rewrite objective using its Fenchel conjugate

$$
\min _{x} f(x)=\min _{x} \max _{y}\langle x, y\rangle-f^{*}(y)
$$

if f is convex, proper and closed.

- All players playing no-regret algorithms \Longrightarrow converge to a Nash equilibrium (in 2-player general sum game) \Longrightarrow find saddle point
- Solve convex optimization problems using no-regret game dynamics
- Dmitry Kovalev, Alexander Gasnikov and Peter Richtárik. 2022 Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling
- P.L. Combettes, L.Condat, J.-C. Pesquet and B.C.Vũ. 2014. A Forward-Backward View of some Primal-Dual Optimization Methods in Image Recovery
- David G. Luenberger and Yinyu Ye. 2008. Linear and Nonlinear Programming. 3rd ed.
- Jun-Kun Wang, Jacob Abernethy and Kfir Y. Levy. 2021. No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization

Additional slides: application to RL

- Estimate value function of a policy π

$$
V^{\pi}(s)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0}=s, \pi\right]
$$

with discount factor $\gamma \in(0,1)$, reward r, state s

- Use linear approximation of $V^{\pi}(s)=\phi(s)^{\top} x$ instead where $\phi(s)$ is a feature vector of state s and x is the model parameters
- Minimize mean squared projected Bellman error

$$
\min _{x}\|B x-b\|_{C^{-1}}^{2}
$$

requires inverting $C=\sum_{t=1}^{n} \phi\left(s_{t}\right) \phi\left(s_{t}\right)^{\top}$

- Equivalently solve saddle-point problem

$$
\min _{x} \max _{y}-2 y^{\top} B x-\|y\|_{c}^{2}+2 b^{\top} y
$$

Additional slides: composition w/ linear map

- $\min _{z} f(A z)$ where A is a linear map
- Rewrite as min-max problem

$$
\min _{z} f(A z) \equiv \min _{x=A z} f(x) \equiv \min _{A^{-1} x=z} f(x) \equiv \min _{x} \max _{y} f(x)+y^{\top}\left(A^{-1} x-z\right)
$$

- Forward-backward algorithm for problems of the form

$$
\min _{x \in \mathcal{H}} \sum_{i=1}^{m} g_{i}\left(L_{i} x\right)
$$

where \mathcal{H} and $(\mathcal{G})_{1 \leq i \leq m}$ are Hilbert spaces, g_{i} is proper lower semi-continuous convex from \mathcal{G}_{i} to $(-\infty, \infty]$ and L_{i} is a bounded linear operator from \mathcal{H} to \mathcal{G}_{i}.

Additional slides: operator splitting notes

$$
\begin{gathered}
0 \in \lambda \nabla f\left(x^{*}\right)+\lambda \partial g\left(x^{*}\right) \text { for all } \lambda>0 \\
0 \in\left(\lambda \nabla f\left(x^{*}\right)-x^{*}\right)+\left(x^{*}+\lambda \partial g\left(x^{*}\right)\right) \\
(I d-\lambda \nabla f)\left(x^{*}\right) \in(I d+\lambda \partial g)\left(x^{*}\right) \\
x^{*} \in(I d+\lambda \partial g)^{-1}(I d-\lambda \nabla f)\left(x^{*}\right)
\end{gathered}
$$

Define proximal operator

$$
\operatorname{prox}_{\lambda g}(x) \triangleq(I d+\lambda \partial g)^{-1}(x)
$$

x^{*} is unique and so

$$
x^{*}=\operatorname{prox}_{\lambda g}\left(x^{*}-\lambda \nabla f\left(x^{*}\right)\right) \text { for all } \lambda>0
$$

Hence x^{*} is a fixed point of

$$
x \mapsto \operatorname{prox}_{\lambda g}(x-\lambda \nabla f(x))
$$

