Kovalev et al. 2022. APDG

Machine Learning Reading Group Summer 2022

Betty Shea

2022-06-15

University of British Columbia

Why this paper?

Relevancy/ interest

- link with VRRG and game theory
- applications in RL
- composition with a linear map problems

Variance reduction reading group/ game theory

- Victor covered another primal-dual method (e.g. SDCA)
- Ties in with the discussion on Fenchel conjugates
- Find minimum of an objective ⇔ find saddle-point in a minmax problem
- $\bullet \ \ \mathsf{Solve} \ \mathsf{optimization} \ \mathsf{problem} \ \Leftrightarrow \mathsf{solve} \ \mathsf{a} \ \mathsf{two-player} \ \mathsf{game}$

Reinforcement learning

Example of an application

- RL task of estimating the value function $V^{\pi}(s)$ of a policy π given state s
- ullet Use linear approximation $ilde{V}^\pi(s)$ with model parameters x
- Learn x by minimizing the mean squared error based on a norm defined by a matrix containing feature vectors of states visited
- Requires inverting a (potentially large) matrix
- Avoid this by solving an equivalent saddle-point problem

Composition with a linear map problems

- $\min_{x} f(Ax)$ where A is a linear map
- Special case of convex-concave saddle-point problem with bilinear coupling
- APDG is a variant of the forward-backward algorithm
- Solves objectives in the form of a sum of composite convex functions

What is this paper about?

Title of the paper

- Accelerated Primal-Dual Gradient Method (APDG) for
- Smooth and Convex-Concave Saddle-Point Problems with
- Bilinear Coupling

accelerated

- ullet convergence rate could be expressed in terms of condition number $\kappa=L/\mu$
- ullet generally, non-accelerated $\Longrightarrow O(\kappa)$, accelerated $\Longrightarrow O(\sqrt{\kappa})$
- many ways to accelerate, paper's method is similar to Nesterov's

primal-dual gradient method

- takes steps using both primal and dual variables
- takes steps using the negative gradient

Saddle-Point Problems

Objective

$$\min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}} F(x, y) : \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$$

A saddle point (x_*, y_*) of F satisfies

$$F(x_*, y) \le F(x_*, y_*) \le F(x, y_*)$$

for any (x, y)

Smooth, Convex-Concave

 L_{xy} -smooth means $(L_{xy} > 0)$

$$\|\nabla_x F(x, y_1) - \nabla_x F(x, y_2)\| \le L_{xy} \|y_1 - y_2\|$$

$$\|\nabla_y F(x_1, y) - \nabla_y F(x_2, y)\| \le L_{xy} \|x_1 - x_2\|$$

Convex-concave means for any point (x_*, y_*)

$$x \mapsto F(x, y_*)$$
 is convex

$$y \mapsto F(x_*, y)$$
 is concave

Bilinear Coupling Problems

$$\min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}} F(x, y) = f(x) + y^{\mathsf{T}} A x - g(y)$$

where $f(x): \mathbb{R}^{d_x} \to \mathbb{R}$, $g(y): \mathbb{R}^{d_y} \to \mathbb{R}$, $A \in \mathbb{R}^{d_x \times d_y}$

- A is a "coupling matrix" (that ties payoff of minimizer and maximizer)
- A is a matrix of the bilinear form
- paper has additional assumptions on A

Contributions

- Two algorithms proposed
 - APDG for smooth, convex-concave, saddle-point problems with bilinear coupling
 - Gradient Descent-Ascent Method with Extrapolation (GDAE) for general smooth, convex-concave, saddle-point problems
- Algorithms allow for "direct" acceleration
- APDG convergence matches theoretical lower bound where known
- GDAE convergence nearly as good as SOTA

APDG (Algorithm 1)

Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling

Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method

```
1: Input: x^0 \in \operatorname{range} \mathbf{A}^\top, y^0 \in \operatorname{range} \mathbf{A}, \eta_x, \eta_y, \alpha_x, \alpha_y, \beta_x, \beta_y > 0, \tau_x, \tau_y, \sigma_x, \sigma_y \in (0, 1], \theta \in (0, 1)
2: x^0_j = x^0
3: y^f_j = y^{-1} = y^0
4: for k = 0, 1, 2, \dots do
5: y^k_m = y^k + \theta(y^k - y^{k-1})
6: x^k_g = \tau_x x^k + (1 - \tau_x) x^k_f
7: y^k_g = \tau_y y^k + (1 - \tau_y) y^k_f
8: x^{k+1} = x^k + \eta_x \alpha_x (x^k_g - x^k) - \eta_x \beta_x \mathbf{A}^\top (\mathbf{A} x^k - \nabla g(y^k_g)) - \eta_x (\nabla f(x^k_g) + \mathbf{A}^\top y^k_m)
9: y^{k+1} = y^k + \eta_y \alpha_y (y^k_g - y^k) - \eta_y \beta_y \mathbf{A} (\mathbf{A}^\top y^k + \nabla f(x^k_g)) - \eta_y (\nabla g(y^k_g) - \mathbf{A} x^{k+1})
10: x^{k+1}_f = x^k_g + \sigma_x (x^{k+1} - x^k)
11: y^k_f = y^k_g + \sigma_y (y^{k+1} - y^k)
12: end for
```

APDG (Algorithm 1): Parameters

Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling

Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method

```
Is Input: x^0 \in \operatorname{rangeA}^T, y^0 \in \operatorname{rangeA}, \frac{\eta_x, \eta_y}{\eta_x, \eta_y} (\alpha_x, \alpha_y) \geqslant 0, \frac{\tau_x, \tau_y}{\tau_x, \sigma_y} \in (0, 1], \emptyset \in (0, 1)
2: x^0 = x^0 overall learning rate weight for accelerated component forward-backward parameter

4: for k = 0, 1, 2, \ldots do

5: y^k_m = y^k + |\emptyset| y^k - y^{k-1} how much to extrapolate

6: x^0_n = \frac{\tau_x}{\tau_x} x^k + (1 - \frac{\tau_x}{\tau_x}) x^k_f how much acceleration

7: y^k_g = \frac{\tau_y}{\tau_y} y^k + (1 - \frac{\tau_y}{\tau_y}) y^k_f

8: x^{k+1} = x^k + \frac{\tau_x}{\tau_x} \alpha_x (x^k - x^k) - \frac{\tau_x}{\tau_x} A^T (Ax^k - \nabla g(y^k_g)) - \frac{\tau_x}{\tau_x} (\nabla f(x^k_g) + A^T y^k_m)

9: y^{k+1} = y^k + \frac{t_y}{t_y} \alpha_x (x^k - x^k) - \frac{\tau_x}{t_y} \beta_x A^T (Ax^k - \nabla g(y^k_g)) - \frac{\tau_x}{\tau_x} (\nabla f(x^k_g) - Ax^{k+1})

10: x^{k+1}_f = x^k_g + \frac{\tau_x}{\tau_x} x^{k+1} - x^k how much momentum

11: y^k_f = y^k_g + \frac{\tau_y}{\tau_x} y^{k+1} - y^k how much momentum

12: end for
```

APDG (Algorithm 1): Updates

Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling

Algorithm 1 APDG: Accelerated Primal-Dual Gradient Method

12: end for

```
1: Input: x^0 \in \operatorname{range} \mathbf{A}^\top, y^0 \in \operatorname{range} \mathbf{A}, \, \eta_x, \, \eta_y, \, \alpha_x, \, \alpha_y, \, \beta_x, \, \beta_y > 0, \, \tau_x, \tau_y, \, \sigma_x, \, \sigma_y \in (0,1], \, \theta \in (0,1)
2: x_j^0 = y^0
3: y_j^0 = y^{-1} = y^0
4: for k = 0, 1, 2, \dots do
5: y_m^k = y^k + \theta(y^k - y^{k-1}) Linear extrapolation step on newly introduced variable
6: x_g^k = \tau_x x^k + (1 - \tau_x) x_f^k Acceleration
7: y_g^0 = \tau_y y^k + (1 - \tau_y) y_f^k Acceleration
8: x^{k+1} = x^k + \eta_x \alpha_x (x_g^k - x^k) - \eta_x \beta_x \mathbf{A}^\top (\mathbf{A} x^k - \nabla g(y_g^k)) - \eta_x \left( \nabla f(x_g^k) + \mathbf{A}^\top y_m^k \right) Forward-Backward
9: y_j^{k+1} = y^k + \eta_y \alpha_y (y_g^k - y^k) - \eta_y \beta_x \mathbf{A} (\mathbf{A}^\top y^k + \nabla f(x_g^k)) - \eta_y (\nabla g(y_g^k) - \mathbf{A} x^{k+1})
10: x_j^{k+1} = y_g^k + \sigma_y (x_j^{k+1} - x_j^k) Momentum
```


Minmax problem

$$\min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}} F(x, y) = f(x) + y^\mathsf{T} A x - g(y)$$

Finding a saddle point (x_*, y_*) means satisfying first order optimality conditions

$$\begin{cases} \nabla_x F(x_*, y_*) = \nabla f(x_*) + A^{\mathsf{T}} y_* = 0 \\ \nabla_y F(x_*, y_*) = -\nabla g(y^*) + A x_* = 0 \end{cases}$$

Requires solving linear system

$$\begin{cases} x^+ = x - A^{\mathsf{T}} y^+ \\ y^+ = y + A x^+ \end{cases}$$

Closed form solution needs inverting a matrix in the form

$$(I + A^{\mathsf{T}}A)$$
 or $(I + AA^{\mathsf{T}})$

Instead, introduce a new variable y_m and solve iteratively

$$\begin{cases} x^+ = x - A^\mathsf{T} y_m \\ y^+ = y + A x^+ \end{cases}$$

What to set y_m ? Paper suggests linear extrapolation step

$$y_m = y + \theta(y - y^-)$$

where y^- is the value at the iteration previous to y

APDG

- Optimal for
 - strongly-convex-strongly-concave problems
 - affinely constrained minimization case (i.e. $\min_{Ax=b} f(x)$))
- Beats SOTA for
 - strongly-convex-concave case (unknown lower bound)
 - convex-concave case (unknown lower bound)
- Worse than SOTA for bilinear case

$$\min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}} a^{\mathsf{T}} x + y^{\mathsf{T}} A x - b^{\mathsf{T}} y$$

Results

Strongly-convex-strongly-concave case (Section 5.1)	
Algorithm 1	$\mathcal{O}\left(\max\left\{\sqrt{\frac{L_x}{\mu_x}}, \sqrt{\frac{L_y}{\mu_y}}, \frac{L_{xy}}{\sqrt{\mu_x \mu_y}}\right\} \log \frac{1}{\epsilon}\right)$
Lower bound Zhang et al. (2021b)	$\mathcal{O}\left(\max\left\{\sqrt{\frac{L_x}{\mu_x}}, \sqrt{\frac{L_y}{\mu_y}}, \frac{L_{xy}}{\sqrt{\mu_x \mu_y}}\right\} \log \frac{1}{\epsilon}\right)$
DIPPA Xie et al. (2021)	$\tilde{\mathcal{O}}\left(\max\left\{\sqrt[4]{\frac{L_x^2L_y}{\mu_x^2\mu_y}}, \sqrt[4]{\frac{L_xL_y^2}{\mu_x\mu_y^2}}, \frac{L_{xy}}{\sqrt{\mu_x\mu_y}}\right\}\log\frac{1}{\epsilon}\right)$
Proximal Best Response Wang & Li (2020)	$\tilde{\mathcal{O}}\left(\max\left\{\sqrt{\frac{L_x}{\mu_x}}, \sqrt{\frac{L_y}{\mu_y}}, \sqrt{\frac{L_{xy}L}{\mu_x\mu_y}}\right\}\log\frac{1}{\epsilon}\right)$
Affinely constrained minimization case (Section 5.2)	
Algorithm 1	$\mathcal{O}\left(\frac{L_{xy}}{\mu_{xy}}\sqrt{\frac{L_x}{\mu_x}}\log\frac{1}{\epsilon}\right)$
Lower bound Salim et al. (2021)	$\mathcal{O}\left(rac{L_{xy}}{\mu_{xy}}\sqrt{rac{L_x}{\mu_x}}\lograc{1}{\epsilon} ight)$
OPAPC Kovalev et al. (2020)	$\mathcal{O}\left(\frac{L_{xy}}{\mu_{xy}}\sqrt{\frac{L_x}{\mu_x}}\log\frac{1}{\epsilon}\right)$
Strongly-convex-concave case (Section 5.3)	
Algorithm 1	$\mathcal{O}\left(\max\left\{\frac{\sqrt{L_x L_y}}{\mu_{xy}}, \frac{L_{xy}}{\mu_{xy}}\sqrt{\frac{L_x}{\mu_x}}, \frac{L_{xy}^2}{\mu_{xy}^2}\right\} \log \frac{1}{\epsilon}\right)$
Lower bound	N/A
Alt-GDA Zhang et al. (2021a)	$\mathcal{O}\left(\max\left\{\frac{L^2}{\mu_{xy}^2}, \frac{L}{\mu_x}\right\}\log\frac{1}{\epsilon}\right)$
Bilinear case (Section 5.4)	
Algorithm 1	$\mathcal{O}\left(rac{L_{xy}^2}{\mu_{xy}^2}\lograc{1}{\epsilon} ight)$
Lower bound Ibrahim et al. (2020)	$\mathcal{O}\left(rac{L_{xy}}{\mu_{xy}}\lograc{1}{\epsilon} ight)$
Azizian et al. (2020)	$\mathcal{O}\left(\frac{L_{xy}}{\mu_{xy}}\log\frac{1}{\epsilon}\right)$
Convex-concave case (Section 5.5)	
Algorithm 1	$\mathcal{O}\left(\max\left\{\frac{\sqrt{L_xL_y}L_{xy}}{\mu_{xy}^2}, \frac{L_{xy}^2}{\mu_{xy}^2}\right\}\log\frac{1}{\epsilon}\right)$

N/A

Lower bound

Related topics

Operator splitting

ullet Suppose objective involves smooth f and possibly nonsmooth g

$$\min_{x \in \mathbb{R}^n} f(x) + g(x)$$

• First-order optimality of x_* and introduce $\lambda > 0$

$$0 \in \lambda \nabla f(x_*) + \lambda \partial g(x_*)$$

• Can think of solution x_* as the fixed point of

$$x \mapsto prox_{\lambda g} (x - \lambda \nabla f(x))$$
 for all $\lambda > 0$

which motivates the iterative approach

Fenchel game

• Can rewrite objective using its Fenchel conjugate

$$\min_{x} f(x) = \min_{x} \max_{y} \langle x, y \rangle - f^{*}(y)$$

if f is convex, proper and closed.

- All players playing no-regret algorithms

 converge to a Nash equilibrium (in 2-player general sum game)

 find saddle point
- Solve convex optimization problems using no-regret game dynamics

References

- Dmitry Kovalev, Alexander Gasnikov and Peter Richtárik. 2022 Accelerated Primal-Dual
 Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling
- P.L. Combettes, L.Condat, J.-C. Pesquet and B.C.Vű. 2014. A Forward-Backward View of some Primal-Dual Optimization Methods in Image Recovery
- David G. Luenberger and Yinyu Ye. 2008. Linear and Nonlinear Programming. 3rd ed.
- Jun-Kun Wang, Jacob Abernethy and Kfir Y. Levy. 2021. No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization

Additional slides: application to RL

• Estimate value function of a policy π

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s, \pi
ight]$$

with discount factor $\gamma \in (0,1)$, reward r, state s

- Use linear approximation of $V^{\pi}(s) = \phi(s)^{\mathsf{T}} x$ instead where $\phi(s)$ is a feature vector of state s and x is the model parameters
- Minimize mean squared projected Bellman error

$$\min_{x} \left\| Bx - b \right\|_{C^{-1}}^2$$

requires inverting $C = \sum_{t=1}^{n} \phi(s_t) \phi(s_t)^{\mathsf{T}}$

Equivalently solve saddle-point problem

$$\min_{x} \max_{y} -2y^{\mathsf{T}} Bx - \|y\|_{C}^{2} + 2b^{\mathsf{T}} y$$

Additional slides: composition w/ linear map

- $\min_z f(Az)$ where A is a linear map
- Rewrite as min-max problem

$$\min_{z} f(Az) \equiv \min_{x=Az} f(x) \equiv \min_{A^{-1}x=z} f(x) \equiv \min_{x} \max_{y} f(x) + y^{\mathsf{T}} \left(A^{-1}x - z \right)$$

Forward-backward algorithm for problems of the form

$$\min_{x \in \mathcal{H}} \sum_{i=1}^m g_i(L_i x)$$

where \mathcal{H} and $(\mathcal{G})_{1 \leq i \leq m}$ are Hilbert spaces, g_i is proper lower semi-continuous convex from \mathcal{G}_i to $(-\infty, \infty]$ and L_i is a bounded linear operator from \mathcal{H} to \mathcal{G}_i .

Additional slides: operator splitting notes

$$0 \in \lambda \nabla f(x^*) + \lambda \partial g(x^*) \text{ for all } \lambda > 0$$

$$0 \in (\lambda \nabla f(x^*) - x^*) + (x^* + \lambda \partial g(x^*))$$

$$(Id - \lambda \nabla f)(x^*) \in (Id + \lambda \partial g)(x^*)$$

$$x^* \in (Id + \lambda \partial g)^{-1}(Id - \lambda \nabla f)(x^*)$$

Define proximal operator

$$prox_{\lambda g}(x) \triangleq (Id + \lambda \partial g)^{-1}(x)$$

 x^* is unique and so

$$x^* = \operatorname{prox}_{\lambda_g}(x^* - \lambda \nabla f(x^*))$$
 for all $\lambda > 0$

Hence x^* is a fixed point of

$$x \mapsto \operatorname{prox}_{\lambda_{\mathcal{B}}}(x - \lambda \nabla f(x))$$